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Abstract

Given a probability space (Q,F, P), a F-measurable random variable X, and a
sub-o-algebra G C F, it is well known that the conditional expectation E[X|J] is the
optimal IL?-predictor (also known as “the least mean square error” predictor) of X,
among all the G-measurable random variables [8, 11]. In this paper, we provide nec-
essary and sufficient conditions for general loss functions under which the conditional
expectation is the unique optimal predictor. We show that E[X|G] is the optimal
predictor for all Bregman Loss Functions (BLFs), of which the L?-loss function is a
special case. Moreover, under mild conditions, we show that the BLFs are exhaus-
tive, i.e., if for all random variables X, the infimum of E[F(X,Y")] over G-measurable
random variables Y is attained by the conditional expectation E[X|G], then F is a
BLF.

*part of the work was done when the authors were at IBM T. J. Watson Research Center, NY.



1 Introduction

The problem of predicting the value of a random outcome based on available information
arises in many contexts. To put the problem into a mathematical framework, let (2, F, P)
be a probability space and let X be a F-measurable random variable that one wishes to
predict. The available information is represented by a sub-o-algebra of F, say G. Now,
the question is: among all G-measurable random variables, which one is the best predictor
of X.

The notion of “best” is usually specified by a non-negative loss function /' and achieved
by solving a corresponding minimization problem. More precisely, the best predictor is
defined as the minimizer of E[F(X,Y)] over all G-measurable random variables Y. A
particularly important case is when F' is the so called L?-loss function, also known as the
mean square error, i.e., F(z,y) = ||z —yl|/%. It is well known [8, 11] that the corresponding
unique best predictor is given by the conditional expectation. In other words, if we write
Y € G for a G-measurable random variable Y, then

argmin E [||X — Y|J?] = E[X|G].
Yeg

This makes conditional expectation crucially important for prediction.

A question arises naturally: Are there other loss functions F for which E[X|G] is the
unique best predictor? Some simple counter-examples lead to the general conviction that
the existence of such loss functions would be rare and would have to possess very special
properties. For example, if one uses the absolute error loss function ([9], Section 1.7) and
take G = {0, Q}, then any constant a satisfying P(X < a) > 1/2 > P(X > a), i.e., the
median of X and not E[X|G], proves to be the best predictor. Recently [1] studied the
case of general convex loss functions and obtained a criterion for which a minimizing value
exists when G = F.

In this paper, we provide necessary and sufficient conditions for general loss functions
under which the conditional expectation is the unique optimal predictor. First, we show
that the optimality property of the conditional expectation holds for all functions known
as Bregman Loss Functions (BLFs) [3], of which the I2-loss function is a special case.
Indeed, one can essentially create as many BLFs as convex functions, up to equivalences
in linear and constant terms (see Definition 1). Secondly, we show that the class of BLFs
is exhaustive under mild conditions, i.e., if the conditional expectation minimizes the
expected loss function for all random variables X, then the loss function has to be a BLF.

2 Bregman Loss Functions

Definition 1 (Bregman Loss Functions) Let ¢ : R? — R be a strictly convez, dif-
ferentiable function. Then, the Bregman Loss Function Dy : R¢ x R¢ — R is defined
as

Dy(z,y) = ¢(x) — 8(y) — (z — 4, Vé(y))-



Table 1: Examples of BLF's.

Domain o(x) Dy(z,y) Loss

R T2 (z —y)? LZ-loss

R+ zlogz zlog(z/y) — (z —y)

(0,1) zlogz + (1 —z)log(l —z) | zlog(z/y) + (1 —z)log((1 —z)/(1 —y)) Logistic loss

Ryt —logz z/y —log(z/y) — 1 Itakura-Saito distance

R e e —e¥ — (z —y)e¥

R? [E3K [l — y[I® L?-loss

R? zT Az (x—y)TA(x — y) Mahalanobis distance !
d-simplex 27:1 zjlogx; Z?:l zj log(x;/y;) KL-divergence

Ri Z‘f:l zjlogx; E?zl xjlog(x;/y;) — ;-izl (zj —y5) Generalized I-divergence

Example 1: The well-known L?-loss function is perhaps the simplest and most widely
used loss function. It is a special case of BLFs, with ¢(z) = (z, z), so that

Dy(z,y) = (z,2) — (y,y) — (z —y,2y) = ||z — y|*.

Example 2: Another widely used BLF is the Kullback-Liebler (KL) divergence. Let
p = (p1,-..,pq) be a discrete probability distribution so that 2?21 pj = 1. The negative

Shannon entropy, ¢(p) = Z;l:l pjlogp;, is a strictly convex function on the d-simplex.
Let ¢ = (q1,--.,qq) be another probability distribution. The corresponding BLF is

d d
Dy(p,a) = Y pjlogpj— Y gjlogg; — (p—q,V(q))
j=1 j=1

d

d d
= ) pjlogp; — Y _gjlogg; — Y (pj — gj)(loge +log g))
j=1 j=1 j=1

d
= Y pilog(p;/g),
j=1
which is exactly the KL-divergence K L(p||q) between p and gq.

Table 1 contains a list of some common convex functions and their corresponding BLFs.
The following useful observation follows from the strict convexity of ¢ [6, Proposition 5.4].

Lemma 1 For any z,y € R?, Dy(z,y) > 0, and the equality holds if and only if v = y.

Remark 1 Since a differentiable convex function is necessarily continuously differentiable
[10, Theorem 25.5], the function Dy, is continuous. Moreover, if we write V as the gradient
with respect to z, then the function

VieDy(z,y) = Vo(z) — V(y)

!The matrix A is assumed to be strictly positive definite.




is also continuous. For more discussions on BLF's, interested readers are referred to [2]
and the references therein.

3 The optimal Bregman predictor

In this section we will show that the conditional expectation is the unique optimal predictor
for all BLFs, and that any nearly optimal predictor will converge in probability to the
conditional expectation.

Theorem 1 (Optimality Property) Let ¢ : R? s R be a strictly convez, differentiable
function and let Dy be the corresponding BLF. Let (2, F,P) be an arbitrary probability
space and let G be a sub-o-algebra of F. Let X be any F-measurable random variable
taking values in R? for which both E[X] and E[¢(X)] are finite. Then, among all G-
measurable random variables, the conditional expectation is the unique minimizer (up to
a.s. equivalence) of the expected Bregman loss, i.e.,

argminy g B[Dy(X,Y)] = EX|G].

Proof: Let Y be any G-measurable random variable, and Y* = E[X|G]. It follows from
Definition 1 that

E[Dy(X,Y)] - E[Dy(X,Y™)]
= E[p(Y") - ¢(Y) - (X =Y, Vg(Y)) + (X - V", Vo(Y™))].

Meanwhile, for any G-measurable random variable Y, we have
E[{(X =Y, V¢(Y))] = BIE[(X =Y, V(Y))|g]] = E[(Y" =Y, V$(Y))].
In particular, E[(X — Y™, V¢(Y*))] = 0. Therefore,

E[Dy(X,Y)] = E[Dy(X,Y™)] = E[p(Y") = ¢(Y) - (V" =Y, V§(Y))]
= E[Dy(Y",Y)]. (1)

The theorem follows immediately from Lemma 1. |

Theorem 2 (Convergence in Probability) In the setting of Theorem 1, if {Y,} is an
infimizing sequence, i.e., Y, is G-measurable and

E[Dy(X,Yn)] = E[Dy(X,Y7)],

where Y* = E[X|G], then Y, — Y™ in probability.



Proof: 1t suffices to show that for any given €,§ > 0, there exists a number N such that
P(Ys - Y| > 8) <e

Vn > N. The integrability of X (and hence of Y*) suggests that for a given ¢ > 0,3IM
such that
P(Y*| > M) < ¢/2.
Hence
P(Ya=Y*|208) < P(Ya—Y*| 26V <M)+P(Y"] 2 M)
P(|Y, =YY" >4,|Y*| < M) +¢/2.
For every = € R¢, if we define
h(z) = inf{Dy(z,y) : y € R?, |y — x| > 4},
then the strict convexity of ¢ implies that h(z) > 0,Vz € RY, and
h(z) = inf{Dy(z,y) : y € R, |y —z[ = 6}
Since Dy is continuous (Remark 1), the infimum is always achieved. Moreover, it can be
shown that
a=inf{h(z): |z| < M} > 0. (2)
For now assuming (2) to be true, we have
P(|Y, = Y| >0) < P(Dg(Y*,Yy) > ) +€/2 < E[Dy(Y*,Yy)] /o + €/2.

Since Y, is an infimizing sequence, from (1) it follows that E[D4(Y*,Y,)] — 0. Hence,
there exists N such that for n > N, E[Dy(Y,Y,)] < ea/2. Therefore, for n > N,

P(|Yn _Y*| 25) S €,

and hence we have convergence in probability.

Finally, we show that a > 0. This is proved by contradiction. Clearly o £ 0. Suppose
a = 0. Then there exists a sequence {z,} with |z,| < M and a sequence {y,} with
|Yn, — Tn| = d such that

h(xn) = Dtb(xnayn) — 0.
Since {z,} and {y,} are both bounded, there exists a subsequence (still indexed by n)
such that
Ty =T, Yn — Y-

Clearly |z| < M and |y — z| = 6. The continuity of Dy yields that Dy(z,y) = 0, which
contradicts h(z) > 0.
This completes the proof. [

Remark 2 Other types of convergence results may be obtained by imposing proper con-
ditions on the function ¢. For example, it is easy to see that Y, — Y* in L? if the
Hessian matrix of ¢ is uniformly positive definite over R? (in the 1-dim case, it amounts
to infyer ¢"(z) > 0).



4 The Exhaustiveness property of BLF's

In this section we establish exhaustiveness results for the class of loss functions for which
the conditional expectation is the optimal predictor. More precisely, under mild regularity
conditions we show that if F : R¢ x R? - R is a non-negative loss function such that

argminy ¢g B [F(X,Y)] = E[X|d], (3)

for all random variable X, then F' has to be a BLF.

We will present the results separately for the one-dimensional (Theorem 3) and the
higher-dimensional (Theorem 4) case, since the latter needs slightly stronger regularity
conditions; see section 5 for more discussions.

For ease of exposition, and without loss of generality, we will assume in Theorem 3
and Theorem 4 that F(z,z) = 0,Vz. Indeed, if F is a loss function satisfying (3), so is
F(z,y) = F(z,y) — F(z,r) with F(z,z) = 0.

Theorem 3 (d =1) Let F: R x R — R be a non-negative function such that F(x,z) =
0,Vx € R. Assume that F and F, are both continuous functions. If for all random
variables X, E[X|G] is the unique minimizer of E[F(X,Y)] over all random wvariables

Y €qg,ie.,
argminy .; E[F(X,Y)] = E[X|G],

then F(z,y) = Dg(z,y) for some strictly convez, differentiable function ¢ : R — R.

Proof:  The proof will be completed in three steps. First, we prove that F' = D, for some
convex, differentiable function ¢, under an additional assumption that F, is continuous;
we then extend this result to the general case by a mollification argument; finally, we show
that ¢ is strictly convex.

Step 1: Assume F; and F), are both continuous. Fix arbitrarily a,b € R, and p € [0,1].
Consider a random variable X on some probability space (2, F, P) such that P(X =a) =p
and P(X =b) =q withp+¢g=1. Let G = {0,Q}. Fix Y = y, then from the assumption

pF(a,y) +qF(by) = E[F(X,Y)] > E[F(X, EX)] = pF(a,pa + qb) + qF (b, pa + gb)

for all y € R. Moreover, if we consider the left-hand-side as a function of ¥, it equals the
right-hand-side at y = y* = E[X] = pa + ¢b. Therefore, we must have

pFy(a,y") + ¢Fy(b,y") = 0. (4)

Substituting p = (y* — b)/(a — b) and rearranging terms yield

Fy(a,y")/(y* —a) = Fy(b,y")/(y" — b).

Since a,b and p are arbitrary, the above equality implies that the function

Fy(z,y)/(y — )



is independent of z. Thus one can write, for some function H,

Fy(z,y) = (y — z)H(y), (5)

where H is continuous.
Now define function ¢ by

//H \dsdt.

Then ¢ is differentiable with ¢(0) = 0, ¢"(y) = H(y). Since F(z,z) = 0,
integration by parts for (5) leads to

Fla) = [ "5 — 2)H(s)ds = §(z) — dly) — ¢/ () (@ — ).

It follows from the non-negativity of F' that ¢ is a convex function.

Step 2: Now we show that there exists a convex function ¢ such that F' = Dy under
the assumption of the theorem. Consider a sequence of mollifiers, i.e., a sequence of
functions {g, } defined on R, which are non-negative, C>* and with compact support such

that
/ gn(z)dr = 1.
R

A classical example for such a sequence of mollifiers is as follows: let

L Jeexp{1/(z* - 1)} if|z| <1,
9le) = {0 it 2] > 1,

where the constant ¢ is to be chosen so that [ g(z)dr = 1, and define g,(z) = ng(nz).
The mollified version of F' is then given by

Fo(z,y) = /RF(rv — 4y — ) g () du = /Rm gt w)ga(y — ) du.

It is standard to show that [7, Section 7.2] F), is continuously differentiable with respect
to z and y, and that
lim F(z,y) = F(z,y),

n—0o0
for every z,y € R.
Furthermore, it is easy to see that F, has the same property as F, i.e., E[X|G] is
the minimizer for the loss function F,,. Therefore, by the proof in Step 1, there exists a
convex, differentiable function ¢, such that ¢,(0) = ¢,,(0) = 0 and

Fu(@,y) = ¢n(z) — dnly) — &, (y)(z — y). (6)
In particular, F,(z,0) = ¢p(z). Since F,(z,0) — F(z,0) for every z, we have

Jim ¢y (z) = F(z,0) = ¢(z)



for every z. Since ¢,’s are convex, so is their limit ¢. In particular, ¢ is continuous [10,
Theorem 10.1]. Setting z = y + 1 in equation (6), we have

tn(y) = Faly+1,9) —dn(y+1) + éuly)
= lim ¢,(y) = Fly+1,y) —éy+1)+¢(y) = f(y)

n—oo

Clearly f is continuous. Letting n — oo in both sides of equation (6), we have

F(z,y) = ¢(z) — d(y) — f(y)(z —v),

where ¢ is continuously differentiable, since F' is continuously differentiable with respect
to z. Furthermore, the non-negativity of F' implies that f(y) is a subgradient of ¢ [10,
Page 214]. Finally, the differentiability of ¢ suggests that its subdifferential is just its
derivative [10, Theorem 25.1]. It follows that ¢'(y) = f(y), and hence F' = Dj.

Step 3: It remains to show that ¢ is strictly convex. From step 2, we already know
that ¢ is a convex function. We prove by contradiction that if ¢ is not strictly convex, the
assumption of uniqueness will be violated. Suppose ¢ is not strictly convex. Then there
exists an interval I = [¢1,#5] such that ¢; < £2 and ¢'(y) = ¢/(¢1) for all y € I. Consider
a random variable X such that P(X = £;) = P(X = /43) =1/2, and set G = {0,Q}. It is
not difficult to check that any y € I is a minimizer. Indeed, E[Dy(X,y)] =0 for ally € I.
This is a contradiction, and we complete the proof. |

Theorem 4 (d > 2) Let F : RY xR? - R be a non-negative function such that F(z,z) =
0,Vz € RY. Assume that F(z,y) and Fro;(z,y), 1 < 4,5 < d are all continuous. For all
random variables X taking value in RY, if E[X|G] is the unique minimizer of E[F(X,Y)]
over all random variables Y € G, i.e.,

argminy cg FIP(X,Y)] = F[X|G),
then F(z,y) = Dy(z,y) for some strictly convez and differentiable function ¢ : R — R.

The proof is divided into three analogous steps as those in Theorem 3. The only essential
difference is in Step 1, which relies on the following lemma. The lemma itself is a direct
consequence of the celebrated Poincaré Lemma.

Lemma 2 Given a collection of continuous functions {hi; : 1 < 14,5 < d} defined on an
open, conver set U C RY (d > 2). If for all triples of indices 1 < i,j,k <d,

Bhij _ 8hkj

hij =
K al‘k awi

hji,

Then there exists a function ® : U — R such that <I>mﬂj = hyj.



Proof:  (of Lemma 2) We first show that there exists a sequence of functions {¢; : 1 <
i < d} defined on U such that, for every index 1,

Vi = (hit, - -, hia)"- (7)

This follows from the given property for triplets of indices in conjunction with the Poincaré
Lemma [5, Theorem 8.1] applied to 1-forms, noting that every convex set is star-convex.
It remains to show that there exists a function @ such that

® = (¢1,---,¢a)" -
Note that for any pair of indices i, j, from equation (7) and the given property, we have
0¢i _ .._h.._%

= h;; = = .
8:17j K I ailti
The existence of ® now follows via the Poincaré Lemma. n

Proof: (of Theorem 4) Step 1: Assume that Fyy;, Fry; and Fyy, 1 < 4,5 < d are
all continuous (i.e., F is twice continuously differentiable). Fix arbitrarily a,b € R¢, and
p € [0,1]. Consider a random variable X on some probability space (92, F, P) such that
P(X =a)=pand P(X =b) =q withp+¢g=1. Let G = {0,Q}. Similar to the proof of
equation (4), we have

pFy(a,y*) + qF, (b,y*) =0, Vi=1,...,d,

at y* = pa+qb. Taking derivatives over p on both sides of the above equation and recalling
qg =1 —p, we arrive at

d
Fy(a,y") = Fy (b,5") + > [PFyuy; (a,y%) + qFyy, (b,5)] (a5 — bj) =0,
7j=1

for every 7 = 1,...,d. In particular, setting p = 1 leads to
d
Fy(a,a) = Fy(b,a) + > Fyy,(a,a)(a; —b;) =0, Vi=1,...,d
j=1

Because F' is non-negative and F(z,z) = 0, we have Fy,(a,a) = 0. Writing H;j(a) =
Fy,y;(a,a), and noting that a and b are arbitrary, we may rewrite the the above equation

as
d

Fy;(z,y) ZHZJ —-zj), Vaz,y€ R, (8)

Since Fy, is continuously dlfferentlable for every i, it follows easily that H;; is also con-
tinuously differentiable for all 1 < 4,57 < d. We now claim that there exists a function
¢:y €R— H(y) € R such that

¢yiyj (y) = Hij(y)a 1<4,5 <d. (9)



Indeed, from equation (8), we see that for every k =1,...,d,

d
Fyiy (z,y) Z ;) + Hix(y),
j=1
and ;
Fyys(@,y) =Y (Hrj)y: (v) (yj — 5) + Hii(y),
j=1
Now, Fy,y, = Fy,,; implies
H;, = Hy;, (Hij)y, = (Hij)y;- (10)

The existence of ¢ now follows from Lemma 2.
Now, from equation (8) we have

Fy (2,9) quylyj ) = % —4(y) — (Vo(),z — )],

which, combined with the condition F'(z,z) = 0, readily yields

F(z,y) = ¢(z) — d(y) — (Vé(y), 2 — y) = Dy(z,)-

The convexity of ¢ is implied by the non-negativity of F.
Step 2 and Step 3: Now repeating the same steps as those in the proof of Theorem
3, Theorem 4 is immediate. |

5 Conclusion

Our paper provides necessary and sufficient conditions for loss functions under which the
conditional expectation is the unique optimal predictor. Beyond its mathematical interest,
the expansion from the I2-loss function to the general class of BLFs has its own distinctive
value. In areas such as image and speech codings where the I?-loss function is no longer
an appropriate or even meaningful measure of error (as was pointed out in [4]), other
functions such as the KL-divergence, the Itakura-Saito distance (see Table 1) etc., play a
dominant role. Our findings may serve as a mathematical justification for the adoption of
these loss functions.

It is worth pointing out that throughout the paper, for the purpose of concise pre-
sentation, we assume that the convex function ¢ is finite on the whole FEuclidean space
R4, The random variable X is also allowed to take values in the whole R%. However, the
same methodology with very minor modifications will lead to similar results when R? is
replaced by an open convex subset of R¢. Some examples of interest include the open
half-space (for ¢(z) = —logx), and the open d-simplex (for ¢(p) = Z?:l pjlogp;).

10



Finally, as was alluded earlier, the stronger regularity condition for the high-dimensional
case (Theorem 4) is used in a crucial way to verify the compatibility condition (10), which
seems almost necessary for solving the system of equations (9). It will be interesting to
see if the regularity condition can be relaxed.
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