Random Fibonacci Sequences and the Number
1.13198824 ... *

Divakar Viswanath |

September 30, 1997

Abstract

For the familiar Fibonacci sequence — defined by f1 = fo = 1,
and f, = fn_1 + fn_2 for n > 2 — f,, increases exponentially with n
at a rate given by the golden ratio (14 +/5)/2 = 1.61803398. ... But
for a simple modification with both additions and subtractions — the
random Fibonacci sequences defined by t1 = t3 = 1, and for n > 2,
t, = xt,—1 £ t,—2, where each + sign is independent and either + or
— with probability 1/2 — it is not even obvious if |¢,| should increase
with n. Our main result is that

V|tn] — 1.13198824... as n — oo

with probability 1. Finding the number 1.13198824... involves the
theory of random matrix products, Stern-Brocot division of the real
line, a fractal-like measure, a computer calculation, and a rounding
error analysis to validate the computer calculation.

1 Introduction

1.1 Random Fibonacci Sequences

The Fibonacci numbers defined by fi = fo =1and f, = f,_1+ fn_oforn > 2
are widely known. Tt is equally well-known that | f,| increases exponentially

*This work was supported in part by NSF Grant DMS-9500975CS and DOE Grant
DE-FG02-94ER25199 to Lloyd N. Trefethen

tDepartment of Computer Science, Cornell University, Ithaca, NY 14853
(divakar@cs.cornell.edu)

1.1361

0 200 400 600 800 1000

(a) (b)

Figure 1: (a) A semilog plot of |t,| vs. n for a computer generated random
Fibonacci sequence t,, showing a clear exponential trend. The dashed line is
1.132". (b) Plot of {/Jt,| vs. n. As n increases to a million, {/]t,| seems to
settle down to a constant close to 1.132.

with n at the rate (14-+/5)/2. Consider random Fibonacci sequences defined
by the random recurrence ¢ty = 1, t; = 1, and for n > 2, t, = £+t,_1 £ t,,_o,
where each £ sign is independent and either + or — with probability 1/2.
Do the random Fibonacci sequences level off because of the subtractions?
Or do the random Fibonacci sequences increase exponentially with n like
the Fibonacci sequence? If so, at what rate? The answer to these questions
brings Stern-Brocot sequences, a beautiful way to divide the real number
line that was first discovered in the 19th century, and fractals and random
matrix products, both areas of active current research, into play. The final
answer itself is obtained from a computer calculation, raising questions about
computer assisted theorems and proofs.
Below are three possible runs of the random Fibonacci recurrence:

1,1,-2,-3,—1,4,-3,7,—4,11, —15,4, —19,23, —4, ...
1,1,2,3,5,8,13, 21, 34, 55,89, 134, 223, 357, 580,
1,1,-2,1,1,-2,1,1,-2,1,1,-2,1,1, -2, . ..

The first of the runs above was randomly generated on a computer. The
second run is the familiar Fibonacci sequence. The last of the three runs

above is a sequence that remains bounded as n — oo. But such runs with
no exponential growth occur with probability 0. For longer, typical runs
see Figure 1. Numerical experiments in Figure 1 illustrate our main result
(Theorem 3.2) that

V] — 1.13198824 ... as n — oo

with probability 1. Thus 1.13198824 ... gives the exponential rate of increase
of |t,| with n for random Fibonacci sequences just as the golden ratio (1 +
V/5)/2 gives the exponential rate of increase of the Fibonacci numbers, f; =
fo=1and f, = fon1+ fno forn > 2.

For the random Fibonacci recurrence t,, = =£t,_; £ t,_o as well as the
recurrence t, = =+t, 1 + t,_o with each £+ independent and + or — with
probability 1/2, |t,,] is either |¢,_1|+|t,_a| or |[tn_1| = |ts_2|| With probability
1/2. As our interest is in [t,| vs. n as n — oo, we restrict focus to ¢, =
+t,_1 + t,_2 and call it the random Fibonacci recurrence. As a result, the
presentation becomes briefer, especially in Section 2.

The next step is to rewrite the random Fibonacci recurrence using matri-
ces. In matrix form the random Fibonacci recurrenceis (1) = (9 4) (§22),
with one of the two matrices

A= ((1’ D . B=— (? _11> (1.1)

picked independently with probability 1/2 at each step. Let us denote the
distribution that picks A or B with probability 1/2. Then the random matrix
M, chosen at the nth step is ps-distributed and independent of M; for ¢ # n.

Moreover,
th— 1
(tn1> =M, o...M (1>

where M,,_5...M; is a product of independent, identically distributed ran-
dom matrices.
Known results from the theory of random matrix products imply that

log||M,, ... M|
n
Vltn]| — €7 as n— oo, (1.3)

— 7y as n — oo, (1.2)

for a constant v, with probability 1 [6, p. 11, p. 157]. About ~; itself known
theory can only say that v, > 0 [6, p. 30]. Our aim is to determine ~; or ef
exactly. Theorem 3.2 realizes this aim by showing that €77 = 1.13198824
In (1.2) and the rest of this paper, all norms are 2-norms, and all matrices
and vectors are real and 2-dimensional. For a vector z, ||z is its Euclidean
length in the real plane. For a matrix M, ||[M|| = sup,_ % However,
(1.2) is true for any norm over 2-dimensional matrices and the limit ~; is
independent of the norm, because all norms over a finite dimensional vector
space are equivalent.

Limit (1.2) for M; independent but identically distributed over d-dimen-
sional matrices has been a central concern of the theory of random matrix
products. Furstenberg and Kesten [16, 1960] have shown that limit (1.2)
exists under very general conditions. When it exists, that limit is usually de-
noted by v and called the upper Lyapunov exponent. Furstenberg [15, 1963]
has shown that when the normalizing condition |det M;| = 1 holds, as it does
for py, “usually” v > 0. Furstenberg’s theorem implies, for example, that
v¢ > 0, and hence, that |¢,| increases exponentially with n with probability
1.

In spite of the importance of the upper Lyapunov exponent v , v is known
exactly for very few examples. Kingman, one of the pioneers of subadditive
ergodic theory of which the theory of random matrix products is a special
case, wrote [22, 1973]:

Pride of place among the unsolved problems of subadditive er-
godic theory must go to the calculation of the constant v (...
). In none of the applications described here is there an obvious
mechanism for obtaining an exact numerical value, and indeed
this usually seems to be a problem of some depth.

One of the applications Kingman refers to is the general problem of finding
~ for random matrix products. For this and other applications, Kingman’s
problem is still unsolved. Bougerol [6, p. 33], Lima and Rahibe [26] calculate
7 for some examples. The work of Chassaing, Letac and Mora [9] is closer
to our determination of ;. But in all their examples, matrices, unlike B in
(1.1), have only non-negative entries. In our opinion, the random Fibonacci
recurrence is more natural than these examples. In fact, the random Fi-
bonacci recurrence in a more general form appears as a motivating example
in the very first paragraph of Furstenberg’s famous paper [15].

1/(1+m)

Figure 2: By (1.5), v¢(I) = ve(1)/2 4+ v¢(12)/2.

1.2 Furstenberg’s Formula

To determine 7, we use a formula from the theory of random matrix products
that complements (1.2). Three things that will be defined below — the
notation Z for directions in the real plane R? amp(Z) which is a smooth
function of Z (Figure on p. 6), and v¢(Z) which is a probability measure over
directions Z (Figure 4) — combine to give a formula for ~;:

v = [anp(E)d (o). (1.4

This formula, derived by Furstenberg [6, p. 77], is the basis of our determi-
nation of vy.

Directions T can be parameterized using angles, T = (gfjg) with 6 €
(—=m/2,7/2], or using slopes, T = () with m € (—oo0,oc]. Slopes m and
angles 6 are related by m = tanf and 6 = arctanm. We use slopes in all
places except Figure 4. In our notation, x is a vector in the direction z, and
T is the direction of the vector z for = # 0.

To define vy, consider the pg-induced random walk on directions that
sends T to T = Axg or to Ty = Bxg with probability 1/2, and then sends 77
to T3 similarly, and so on. In terms of slopes, the slope m is mapped by the

5

random walk to 1+1/m or to —1+1/m with probability 1/2. The measure
vr is the unique invariant probability measure over ¥ for this random walk,
ie.,

1T 1
v1(8) = 5v5(A718) + Svy(B1S),

where S is any Borel measurable set of directions. We also say that vy is
ps-invariant. For the existence and uniqueness of vy, see [6, p. 10, p. 32]. It
is also known that vy must be continuous [6, p. 32], i.e., v;({Z}) = 0 for any
fixed direction 7.

Since the bijections ¥ — A~lz and T — B~lz (sometimes called backward
maps) map the slope m to 1/(—1+ m) and to 1/(1 + m) respectively, the
condition for ps-invariance in terms of slopes is

1 1 1 1
vy(la, b)) = §Vf(—1 + [a, b]) + §Vf(1 + [a,b])’ (15)
where [a, b] is any interval in the real line. See Figure 2.
e (oo
amp(m)—
(\N=1/2 10 1/2 /|
-1\ '/ 1 m

The function amp(Z) defined by

Log 142l 1, [1Ba
2 % el T2

amp(T) =

gives the average amplification in the direction ¥ when x is multiplied by A
or B with probability 1/2. Recall that ||-|| was taken to be the 2-norm. In

terms of slopes,

amp(m) = llog(mQ + (-1 +m)2) llog(m2 +a +m)2)

4 1+ m?2 4 1+ m?2
_110 (1+4m4>
“ 1\ e/

The figure above plots amp(m) vs m.
Furstenberg’s formula (1.4) can now be put in a concrete form using slopes
to parameterize directions Z:

Vi = /oo amp(m) dvg(m) = %/OO 10g((1+74m4) dvg(m). (1.6)

To illustrate how (1.6) is used, we verify quickly that 44 > 0. The invariance
condition (1.5) applied to the set [—o0, —1]U[L, o] implies vy (|m| > 1) > 1/2
because 1/(—1+ [1,00]) = [0,00] and 1/(1 4+ [—o0, —1]) = [0, 0]. Now,

vy = [aump(om) dg(m)

—00

> min amp(m) v¢(Jm| < 1) + min amp(m) vy (|m| > 1)
Im|<1 m|>1

= —108(2) ws(lml < 1) + 7108 () vy (Im| > 1)
> 0.

The first inequality above is strict because vy must be continuous and amp(m)
is not a constant function. Minimizing amp(m) over |m| < 1 and |m| > 1 is
basic calculus: the minima occur at the points m = +1/2 and m = +1. The
final > is by v;(|m| > 1) > 1/2. Actually, it will be shown in Section 2 that

vy(Im] > 1) = (V5 - 1)/2.

1.3 Overview and Some Remarks

In Section 2, which is the heart of this paper, we construct v exactly using
the Stern-Brocot division of the real line. See Figures 3, 4. The computer
calculation leading to e = 1.13198824 ... and its rounding error analysis are
given in the appendix. The main features of the computation are summarized
in Section 3. Our main result is Theorem 3.2 (e?f = 1.13198824...) which
is finally an elementary answer to an elementary question about {/W .

7

The measure vy determined in Section 2 is shown in Figure 4. Repetition
of the same structure at finer scales and an irregular appearence suggest that
vy may be a type of fractal. We will say what we precisely mean by a fractal
in Section 2, but we explain now why it should be no surprise if vy were a
fractal. Recall that by (1.5) vy is the probability measure over R satisfying

vy(la, b)) = %Vf(m) + %Vf(%[a,b])

In words, transforming the measure v; under the two maps m — +£1+1/m
and then averaging gives back v;. Since the slopes of the backward maps m —
1/(£1+m) vary in magnitude from 0 to oo, not only is vy self-similar [32], the
self-similarity equation has multiple scales. Self-similar functions, especially
ones with multiple scales, usually turn out to be fractals. For example, Weier-
strass’s nowhere-differentiable but continuous functions, which are commonly
used examples of fractal graphs, satisfy f(x) = X*2sin(\t) + Af(\t) with
1 <s<2,A>1, and X large enough [14]. An other remarkable example is
Daubechies’ wavelets; the solution to

76 = 5 poy 1+ 35 o 1) 22 o
By

has an irregular graph which is a type of fractal, yet it can be used to con-
struct wavelets that approximate smooth functions very well [31, p. 437].

A striking aspect of Theorem 3.2 in Section 3 is that its proof depends on
a computer calculation. Thus its correctness depends not only upon mathe-
matical arguments that can be checked line by line, but upon a program that
can also be checked line by line and the correct implementation of various
software and hardware components of the computer system. The most fa-
mous of theorems whose proofs depend on computer calculations is the four
color theorem. The first proof of the four color theorem (all planar graphs
can be colored using only four colors so that no two adjacent vertices have
the same color) by Appel, Haken and Koch caused controversy and aroused
great interest because it relied on producing and checking 1834 graphs using
1200 hours of 1976 computer time [24] [2]. In spite of improvements (for
example, the number 1834 was brought down to 1482 soon afterwards by
Appel and Haken themselves), all proofs of the four color theorem still rely
on the computer.

Unlike our computation, however, all computational steps in these proofs
of the four color theorem are exact and do not use floating point arithmetic
which is inexact owing to rounding errors. There are some claims now of
theorems proved using floating point arithmetic validated by rounding error
analyses. The computer assisted proof of chaos in the Lorenz equations
announced by Mischaikow and Mrozek [27] is a notable example, though the
full details of the error analysis are still unpublished. We will discuss the use
of floating point arithmetic and other issues related to our Theorem 3.2 in
Section 3.

Besides random matrix products, random Fibonacci sequences are con-
nected to many areas of mathematics. For example, the invariant measure
vs is also the distribution of the continued fractions

1
LS

with each +1 independent and either +1 or —1 with probability 1/2. The
matrices A and B in (1.1) can both be thought of as Mdbius transformations
of the complex plane; then the random matrix product and the exponential
growth of |¢,| in (1.2) and (1.3) would correspond to the dynamics of complex
numbers acted upon by a composition of the Mobius transformations A and
B [6, p. 38]. Also, the random walk on slopes m — 1/(£1 + m) can be
thought of as a random dynamical system [3]. These different interpretations
amount merely to a change of vocabulary as far as the computation of v is
concerned; still each interpretation can offer a different point of view.

The study of random matrix products, initiated by Bellman [4, 1954], has
led to many deep results and applications. Applications have been made to
areas as diverse as Schrodinger operators, image generation, and demography
[12][13][34]. Our own interest in random recurrences was aroused by their
connection to random triangular matrices [35]. Furstenberg and Kesten [16,
1960], Furstenberg [15, 1963], Osseledac [28, 1968], Kingman [22, 1973], and
Guivarc’h and Raugi [18, 1985] are some of the profound contributions to this
area. We enthusiastically recommend the lucid, elegant and well-organized
account by Bougerol [6]. For a more modern treatment, see [5]. For the
basics of probability, our favorite is [7].

[;TEJ}AQ\TEQ wif/ﬁdi\Tia
e T R
5] /)@@\

Figure 3: The Stern-Brocot tree; its nodes are intervals of the real line R.
The division of any interval [¢,], except the root, into two children is done

b’ d
by inserting the point 5.

2 The Stern-Brocot Tree and Construction
of the Invariant Measure vy

Assuming +1 ¢ (a,b), we write the invariance condition using slopes (1.5) in
a more explicit form:

vl) = s (itg =) g (g i) @)

146 -14a 1+b61+a

Our goal in this section is to find vy, the unique probability measure on the
real line R satisfying (2.1) for all intervals [a, b] not containing 1. Since vy
must be continuous, it does not matter whether we take the intervalsin (2.1)
to be open or closed or half-closed.

The construction of vy is based on the Stern-Brocot tree shown in Figure
3. The Stern-Brocot tree is an infinite binary tree that divides R recursively.

Represent oo as % and 0 as %, and write negative fractions with the numerator
negative. Then the root of the Stern-Brocot tree is the real line [, 7). Its
left and right children are [ZF, 2] and [, 3], the positive and negative halves
of R. The rest of the tree is defined by dividing any node [$, §] other than
the root into a left child [¢, 375] and a right child [37%, §]. For example, the

10

root’s left child [t, 9] divides into [, 5t] and [, 9]

The Stern-Brocot tree was discovered and reported independently by the
mathematician Moriz Stern in 1858 and by the watchmaker Achille Brocot
in 1860 [30] [8]. Unaware of its existence, we found it again while trying to
construct vy. We summarize some basic facts about it in Lemma 2.1. The
Stern-Brocot tree and its connections with continued fractions are discussed
in detail by Graham, Knuth and Patashnik [17]. Their definition of the
Stern-Brocot tree is slightly different from ours. We adopt their notation
a 1 b to say that integers a and b are relatively prime.

Lemma 2.1. (a) The Stern-Brocot tree is symmetric about 0 with its right
half positive and its left half negative.

(b) If [§, 5] is a node in the positive half of the Stern-Brocot tree, then bc —

ad=1,a L b, and c L d.

(c) Conwversely, if a/b and c/d are non-negative rational numbers with zero
and infinity represented as % and % respectively, and bc — ad = 1 then
5 g] occurs as a node in the Stern-Brocot tree. Consequently, every
rational number a/b, a L b, appears as an endpoint of a Stern-Brocot

interval of finite depth.

Proof. (a) is obvious; see Figure 3. The proof of (b) is an easy induction on
the depth of the tree. (c) is a little bit less easy. Its proof is related to Euclid’s
algorithm for computing the greatest common divisor of two integers. See
[17]. O

We adopt a labelling scheme for Stern-Brocot intervals (nodes of the
Stern-Brocot tree) that differs only a bit from that in [17]. The root [, ¢]
has the empty label. Its left and right children (<, 2] and [2, 1] are labelled {
and r respectlvely The left child of [, [o T =] is labelled lL The right child
of IL, [5%, 7], is labelled [LR, and so on. Only the first letter of a label is
in Small case because the division of the root is special.

We use la or ra to denote the labels of Stern-Brocot intervals other than
the root, with a being a possibly empty sequence of Ls and Rs. The sequence
obtained by changing a’s Ls to Rs and Rs to Ls is denoted &. For example,
the reflection of the positive interval ra about 0 is the negative interval la.
The length of a is denoted by |a|. We take the depth of la or ra to be 1+ |a].

Lemmas 2.2 and 2.3 express the maps m — 1/m and m — +1 +m
succinctly for Stern-Brocot intervals. They allow us to reduce the invariance

11

requirement (2.1) for Stern-Brocot intervals to an infinite system of linear
equations (see (2.2)). That reduction is the first step in constructing v;.

Lemma 2.2. The image of the interval [a/b, c/d] under the map m — 1/m
— the image is [d/c,b/a] if 0 is not an interior point — is given by the
following rules for Stern-Brocot intervals:

la — la, ra— ra.
Proof. We give the proof for intervals of type ra using induction on the depth
of ra in the Stern-Brocot tree. The proof for intervals la is similar.
The base case r — 7 is true because m € [0, oo] if and only if 1/m € [0, o0].

For the inductive case, note that [§, §], its left child [, ZTJFZI:L and its right

child [§75, 9] are mapped by m — 1/m to [, 2], its right child [%‘i, 2] and
its left child [%, ziJr‘i] respectively. Therefore, if ra« — ra then ral — raR
and raR — ral. O

Unlike the inversion operation m — 1/m in the previous lemma, both
the operations m — =+1 + m in the following lemma change the depth of
Stern-Brocot intervals.

Lemma 2.3. The image of Stern-Brocot intervals under the map m — —1+
m 1s giwen by the following rules:

lao — [La, rLa — [Ra, rRa — ra.

Simalarly, the image of Stern-Brocot intervals under the map m — 1+ m s
given by the following rules:

[La — la, [Ra — rLa, ra — rRa.

Proof. Similar to the previous proof. We will outline the proof for m — 1+m
only.

The base cases, adding 1 to the intervals (L, [R and r, are easy to check.
For the induction, we note that [¢, 5] is divided in the Stern-Brocot tree

at the point 3¢, and its map under m — 1+m, [1+¢, 14 9], is divided in the

Stern-Brocot tree at the point 1+ ‘;TJF(;. Thus [§,], its left child, and its right

child map to [1 4+ ¢,1+ §], its left child, and its right child respectively. O

12

By Lemma 2.3, subtraction and addition of 1 to intervals in the Stern-
Brocot tree correspond to left and right rotation of the tree. Tree rotations
are used to implement balanced trees in computer science [11].

Thanks to Lemmas 2.2 and 2.3, the backward maps m — 1/(£14m) can
be performed on Stern-Brocot intervals easily. For example, 1/(1+ILRL) =
1/IRL = ILR. The invariance requirement (2.1) for Stern-Brocot intervals
becomes an infinite set of linear equations for v;(I), I being any Stern-Brocot
interval:

vi(l) = Sus(IR) + 5(v5(1) + vs(rR)

g(r) = 5 (05(r) + wyIL)) + S (D)
I/f(lLOz) = %Vf(lL—LO!) + %Vf(la)
vi(lRa) = %Vf(lL—iné) + %Vf(rm)

1 — 1 -
vi(rLa) = iuf(lRoz) + iuf(rRLa)

vi(rRa) = %Vf(rﬁ) + %Vf(rm). (2.2)

We guessed the solution of (2.2). Even though the linear system (2.2)
has only rational coefficients, its solution involves v/5, an irrational number!
Let ¢ = (14 v/5)/2. Since vy is a probability measure, we require that
v¢([—00, 00]) = 1. The solution is:

vi(r)=1/2
1
14+g

= lj_gyf(ra) if | is odd

vi(ral) = ve(ra) if |af is even

T gyf(ra) if |a is even
1
=1 +gyf(ra) if || is odd
vi(la) = ve(ra). (2.3)

For example, vf(r) = 1/2, vy(rL) = (1 + g)~'/2, vy(rLL) = g(1 + g)2/2.
Since v¢(la) = v¢(ra) by (2.3), the measure vf is symmetric about 0. The
same features of vy repeat at finer and finer scales. See Figure 4.

13

0.5 1 1.5

ol ‘ ‘
-15 -1 -0.5

0
(c) (d)

Figure 4: (a), (b), (c) show the measure vy over directions in R% In these
figures, the interval [0, oo] is divided into 23, 2%, and 2% Stern-Brocot intervals
of the same depth, and then slopes are converted to angles in the interval
[0,7/2]. The area above an interval gives its measure under vy. Because of
symmetry, v¢ in the directions [—7/2,0] can be obtained by reflecting (a),
(b) and (c). Some of the spikes in (c) were cut off because they were too tall.
(d) is the cumulative density function for vy with directions parameterized
using angles.

14

Theorem 2.4. The measure vy defined by (2.3) satisfies the invariance re-
quirement (2.1) for every Stern-Brocot interval. Further, with directions
parameterized by slopes, vy defined by (2.3) gives the unique pg-invariant
probability measure over directions in the real plane R?.

Proof. To show that vy is pp-invariant, it is enough to show that vy satisfies
the invariance conditions (2.2) for Stern-Brocot intervals. The reason is — vy
is obviously a continuous measure, every rational appears in the Stern-Brocot
tree at a finite depth by Lemma 2.1c, and the rationals are dense in R. For
the uniqueness of vy, see [6, p. 31].

It is enough to prove the invariance condition for positive intervals ra.
The validity of the invariance condition for negative Stern-Brocot intervals
follows from symmetry. Assume the invariance condition for the interval
rLa:

1 1 -
vi(rLa) = iyf(lRoz) + §Vf(rRLa).
Then the invariance condition for r La L,
| — 1 -
vi(rLal) = iuf(lRozR) + izxf(rRLaR),

is also true, because the three fractions

vi(rLaL) vi(IRaR) vi(rRLaR)
vi(rLa) * vi(IRa) = vi(rRLa)’

are all either g/(1+ g) or 1/(1 + g) according as || is even or odd. By
a similar argument, if the invariance condition (2.2) holds for all positive
Stern-Brocot intervals at depth d > 2, then the invariance condition holds
for all positive Stern-Brocot intervals at depth d + 1.

Therefore, it suffices to verify (2.2) for r, L, and rR. For r, (2.2) requires,

11 1 1, g
225 g 219

which is obviously true. For rL, (2.2) requires,

1 g 1

2(1+g) 4(1+9) + 41+ g)%’

15

which is true because g = (1 4+ v/5)/2. The invariance condition for rR
can be verified similarly. Thus the invariance condition (2.2) holds for all
Stern-Brocot intervals, and we can say that v; is the unique ps-invariant
probability measure. O

Because of symmetry, the measure vy over slopes given by (2.3) is in-
variant even for the distribution that picks one of (fl ill) with probability
1/4. Moreover, Furstenberg’s integral for the Lyapunov exponent v of this
distribution is also given by (1.6).

For some distributions supported on 2-dimensional matrices with non-
negative entries, the infinite linear system analogous to (2.2) is triangular,
or in other words, the invariance requirement for a Stern-Brocot interval
involves only intervals at a lesser depth. For a typical example, choose (% (1))
with probability p, 0 < p < 1, and (9}) with probability 1 — p. In this
example, the invariant measure over directions parameterized by slopes is
supported on [0, 00|, the slope m is mapped to 1/(1 + m) and 1 + 1/m
respectively, and the ranges of those two maps ([0, 1] and [1, o0]) are disjoint.
Chassaing, Letac and Mora [9] have found the invariant measure for several
2-dimensional random matrix products that fit into this framework. All their
matrices have non-negative entries. Moreover, since the linear systems for
finding the invariant measure are triangular for all the examples in [9], the
solution can have irrational numbers only if the original problem does.

According to historical remarks in [9], measures similar to v; have been
studied by Denjoy, Minkowski, and de Rham. But is v; a fractal? To make
this precise, we need the definition

dim(vy) = inf{dim(S)|v; is supported on S},

where dim(S) is the Hausdorff dimension of S C R. To show that vy is a
fractal, it is necessary to prove that 0 < dim(vf) < 1. While it is known
that 0 < dim(vy) [6, p. 162], a proof that dim(vf) < 1 or that vy is singular
with respect to the Lebesgue measure does not seem to be available though
those statements are almost surely true. However, the Hausdorff dimensions
of very similar measures have been determined by Kinney and Pitcher [23].
We also note Ledrappier’s conjecture that dim(v) < 1 [25] [6, p. 162].

16

3 e =1.13198824...

Furstenberg’s integral for v, (1.6) can be written as

1 1+ 4m
=2 —1 —)d
Vs /0 Og((mg)z) vi(m)

1+

because both the integrand and v; are symmetric about 0. In this section,
we use this formula to compute v; with the help of a computer. Thus the
determination of €77 to be 1.13198824... is computer assisted. We will
explain later why we report this result as a theorem (Theorem 3.2), even
though it is computer assisted.

Let I, 1 < j < d, be the 2¢ positive Stern-Brocot intervals at depth
d+ 1. Then,

2d 2d

P = ZZ min amp(m) v (I) <Yf<qq= ZZmaxa,mp()uf(IJ‘-i). (3.1)

eI eI

The inequalities above are strict because amp(m) is not constant, and vy is
continuous. Also, (3.1) defines pg and ¢4. Since 7 is trapped in the intervals
(pa, qq), and the interval length |g; — pg| shrinks to 0 as d increases, we can
find ¢ to any desired accuracy by computing ps and ¢4 for large enough d.

We computed py; and ¢4 with d = 28 on a computer using IEEE dou-
ble precision arithmetic (the C program used is described in the appendix).
Computations in floating point arithmetic are not exact, but when done care-
fully, give an answer that is close to the exact answer. If fl(e) denotes the
number obtained by evaluating the expression e in floating point arithmetic,
fi(e) depends both on the type of floating point arithmetic used and the al-
gorithm used to evaluate e. Our computations using IEEE double precision
arithmetic [21] and an algorithm described in the appendix gave

fl(pas) = 0.1239755981508, fl(gas) = 0.1239755994406. (3.2)

In hexadecimal code, the 64 bits of fl(p;) and fl(¢4) in IEEE double pre-
cision format are 3fbfbcdd638f4d87 and 3fbofbecdd6919756d respectively. The
appendix will explain the way to reproduce our computation to get exactly
these two numbers. We will now upper bound the errors |fl(pes) — p2s| and
Ifl(g2s) — qas] to realize our aim of obtaining bounds for v, from (3.2).

17

IEEE double precision arithmetic (defined by the standard IEEE-754 [21])
can represent all real numbers of binary form (—1)%by.b; . . . bsy 2671923 exactly.
Here, by = 1, the bits b; to bsz can be 1 or 0, the sign bit s can be 1 or 0, and
the biased exponent e can be any integer in the range 0 < e < 2047. The
number 0 can also be represented exactly. In fact, the values e = 0 and e =
2047 are used to implement special features that we do not describe. From
here on, floating point arithmetic always refers to IEEE double precision
arithmetic, and floating point number refers to a number in that arithmetic.
Thus if @ is a real number in the range [271022 (1 + 271 4 ... 4 2752)21023]
a can be represented such that fl(a) = a(1 + F) with the relative error
satisfying |E| < 27°2 [19, p. 42].

The IEEE standard treats +, —, X, +, NE basic operations. The basic
operations cannot always be performed exactly. For example, the sum of two
floating point numbers may not have an exact floating point representation.
However, all these basic operations are performed as if an intermediate re-
sult correct to infinite precision is coerced into a representable number by
rounding. We assume the “round to nearest” mode which is the default type
of rounding. Thus if @ and b are floating point numbers,

flla+0b) =(a+b)(1+ E)
flla—b)=(a—b)(1+FE)

fi(a/b) = (a/b)(1 + E)
fila xb) =(axb)(1+E)

fi(va) = (Va)(1+ E), (3.3)

where the relative error £ may depend upon a, b and the operation per-
formed, but |E| < 27°2. For convenience, we denote 2752 by u !. For (3.3) to
be valid, however, the operation should not overflow and produce a number
that is too big to be represented, or underflow and produce a number that is
too small to be represented.

The C program we give in the appendix uses a function tlog(x) to com-
pute logx. This becomes necessary because log is not a basic operation in
the IEEE standard. However, tlog() is implemented so that

fi(loga) =loga(l + E) (3.4)

1The bounds on |E| can be taken as 2752 [19, p. 42], but with the current choice the
relative error of Tang’s log function (see (3.4)) has the same bound as that of the basic
operations.

18

with |E| < u whenever a is a positive floating point number. For the clever
ideas that go into tlog() and the error analysis, see the original paper by
Tang [33].

The proof of Lemma 3.1 is given in the appendix.

Lemma 3.1. Assume that (3.3) and (3.4) hold with 0 < u < 1/10 for the
floating point arithmetic used. Then for the algorithm to compute the sums
pq and qq described in the appendiz,

fi(pa) — pal < T(e“(d“) —1)+ Zueu(d—f-l)’
log 4 33
1(ga) — qa| < %(e”(dﬂ) — 1)+ Zueu(d-}-l)‘

In the theorem below, by 1.13198824 ... we mean a number in the interval
[1.13198824,1.13198825).

Theorem 3.2. (a) The constant s lies in the interval

(0.1239755980, 0.1239755995).

(b) e =1.13198824

(c) Asn — oo,

V|tn] — 1.13198824 . ..
with probability 1.

Proof. In the computation leading to fl(pss) and fl(¢ss), there are no overflows
or underflows, and hence, (3.3) and (3.4) are always true. Therefore, we can
use v = 27°? and d = 28 in Lemma 3.1 to get

fl(pas) — pas| < 107, [fl(gos) — qos| < 107

Now the values of fl(psg) and fl(ges) in (3.2) imply (a). (b) is implied by (a).
In fact, we can also say that the digit of e after the last 4 in (b) must be
an 8 or a 9. (c) follows from earlier remarks. O

19

0.5

0.251

Figure 5: The Lyapunov exponent ¢(p) vs. p. ~¢(p) is determined by
numerically approximating the correct invariant distribution for the given p.
For a description of the numerical method, sometimes called Ulam’s method,
see [20].

Theorem 3.2 above is the main result of this paper. We arrived at The-
orem 3.2 using Lemma 3.1 and rounding error analysis. An alternative is to
use interval arithmetic to validate the computation [1]. Instead of rounding
the computations to the nearest floating point number, interval arithmetic
carefully rounds the various stages of the computation either upwards or
downwards to compute a lower bound for p; and an upper bound for qq.
As a result, were we to use interval arithmetic there would be no need for
rounding error analysis. A disadvantage would be that the manipulation of
rounding modes necessary for implementing interval arithmetic would make
it significantly more expensive on most computers. Our approach exposes the
ideas behind floating point arithmetic and shows that floating point arith-
metic is rigorous too. Besides, the rounding error analysis as summarized by
Lemma 3.1 gives a clear idea of the error due to rounding. This tells us, for
example, that the rounding errors |fl(pag) — pas| and |fl(gas) — gos|, which are
both less than 10714, are much smaller than the discretization error |pag—gos|,
which is about 1078.

Since the proof of Theorem 3.2 relies on a computer calculation, the va-
lidity of the proof requires some comment. The construction of v in Section
2, the program and the rounding error analysis given in the appendix can

20

all be checked line by line. However, Theorem 3.2 still assumes the correct
implementation of various software and hardware components including the
standard IEEE-754. We did the computation on two entirely different sys-
tems — SUN’s Sparc server 670 MP, and Intel’s 1686 with the Linux operating
system. In both cases, the results were exactly the same as given in (3.2);
the hex codes for fl(py) and fl(g;) matched the hex codes given below (3.2).
As it is very unlikely that two systems with such different architectures may
have the same bug, we feel that the correctness of Theorem 3.2 should, at
worst, be doubted no more than that of tedious and intricate proofs that can
be checked line by line. Though the use of floating point arithmetic to prove
a theorem may be unusual, the proof of Theorem 3.2 is only as depedent on
the correctness of the computer system as, say, the proof of the four-color
theorem; in other words, assuming the implementation of IEEE arithmetic to
be correct is just like assuming the implementation of a memory-to-register
copy instruction to be correct.

Besides, all components of a computer system, like mathematical proofs,
can be checked in careful line by line detail, and this is done many times
during and after their implementation. However, experience has shown that
some bugs can defy even the most careful scrutiny. A great deal of research
has gone into developing systems to verify that hardware and software im-
plementations meet their specification [10]. But those systems are still not
mature enough to be used in situations such as ours.

To conclude, we ask: Is there a short analytic description of v;? The
fractal quality of 7, suggests no. But let v¢(p) be the Lyapunov exponent
of the obvious generalization ¢t; = ¢, = 1, and forn > 2, ¢, = £t, 1 £, o
with each + sign independent and either 4+ with probability p or — with
probability 1 — p. Unfortunately, the techniques described in this paper for
v¢(1/2) do not seem to generalize easily to v¢(p), 0 < p < 1. A beautiful
result of Peres [29] implies that ¢(p) is a real analytic function of p. See
Figure 5. The analyticity of v;(p) vs. p seems to increase the possibility that
there might be a short analytic description of ;.

A Appendix : Rounding Error Analysis
The main steps in the computation of p; and ¢4 are the computation of

ve(If), where I, 1 < j < 2% are the 2¢ positive Stern-Brocot intervals of
depth d 4 1; the minimization and maximization of amp(m) over I{; and the

21

summation over 1 < j < 2¢ as in the defining equation (3.1). We describe
some aspects of the computation and then give a rounding error analysis to
prove Lemma 3.1. A C program for computing pg and ¢4 for d = 28 is given
at the end of this section so that our computation can be reproduced; its
perusal in not necessary for reading this section.

Lemma 2.2 implies that the denominators of the 2¢ positive Stern-Brocot
intervals of depth d + 1 occur in an order that is the reverse of the order of
the numerators. For example, the positive Stern-Brocot intervals of depth
4 are defined by divisions at the points %, %, %, %, %, %, %, %, %, the numerators
for that depth occur in the order 0,1,1,2,1,3,2,3,1, and the denominators
occur in the reverse order 1,3,2,3,1,2,1,1,0. We use this fact to avoid
storing the denominators of the Stern-Brocot divisions. The numerators are
stored in the array num[] by the C program.

To compute pg and g4, we use (3.1) in the following form:

2d d
: 1+ 4m* \ vy (1)
_ 1)l
" ;%}(og (+m22) 2
2d d
1+ dm* \ ve(I5)
- 1) i Al

By (2.3), v¢(I})/2 is one of the d + 1 numbers g~*(1 4 g)%/4, 0 < i < d,
where g = (1 + +/5)/2. The array table[] in the C program is initialized
after precomputing these d+1 numbers to very high accuracy in the symbolic
algebra system Mathematica so that table[i]1= (g% ¢ (1+g) %/4)(1+F) with
the relative error F satisfying |F| < u. The index 7 into table[] for getting
Vf(I]‘?l) /2 is obtained by taking the binary representation of j, flipping all the
odd bits if d is even and all the even bits if d is odd with the least significant
bit taken as an even bit, and then counting the number of 1s; correctness of
this procedure can be proved easily using induction.

The minimization or the maximization of 4amp(m) over I{ in (A.1) are
easy to do. Since amp(m) has its only local minimum for m > 0 at m = 1/2
(see Figure on page 6), both the minimum and the maximum are at the
endpoints of .

The summations in (A.1) are performed pairwise, not left to right. The
pairwise summation of 2¢ numbers is done by dividing the 2¢ numbers into
24=1 pairs of adjacent numbers, adding each pair to get 29~! numbers, and
then reducing the 2%~ numbers to 2¢=2 numbers similarly, and so on until

22

a single number is obtained. Rounding error analysis leads to smaller upper
bounds on [fl(py) — pg| and |fl(g4) — qa| for pairwise summation than for term-
by-term left to right summation [19, p. 92]. The bounds for left to right
summation are not small enough to give €7 correctly to the 8 decimal digits
shown in Theorem 3.2.

Lemmas A.1 and A.2 help simplify the proof of Lemma 3.1.

Lemma A.1. Assume 0 < fi(u) < 14e < g1(u) and 0 < fo(u) < 14ey <

g2(u).

(@) Ifa > 0, b > 0, and a(1 +e1) +b(1 +e2) = (a+b)(1 + E), then
min(fy(u), f2(u)) <1+ E < maz(gy(u), g2(u)).

(b) If1+ E=(1+e1)(1+er), then fi(u)fo(u) <1+ E < gi(u)ga(u).
(¢) If1+ E=(14e€1)/(14e3), then fi(u)/g2(u) <1+ FE < g1(u)/ fo(u).

Proof. To prove (a), note that 1 + F is the weighted mean of 1 4+ e; and
1+ ey. (b) and (c) are trivial. O

Consider the computation fl(m?):
fi(m?) = fi(m) fi(m)(1 +¢') = m*(1 +¢)(1 + €")?,

where €” is the relative error in representing m, and €' is the relative error
caused by rounding the multiplication. By (3.3) and remarks in the para-
graph preceding it, 1 —u < 1+¢€,1+¢€” <1+ u. Lemma A.1b allows us to
gather the factors 1+ €’ and (1 + €”)? together and write

film?) = m?(1 + e), (A.2)

with (1 —u)® <1+ E < (1+u).
Consider the computation fi(1 + m?):

(1 +m?) = (1+Am?)) (1 +e") = (1+m*(1+e)(1+e"))(1+e"),

where € is the relative error in the addition 14+m?, and e, ¢’ are, as before,
the relative errors in representing m and the multiplication m x m respec-
tively. As it was with 14+¢ and 14+¢€”, 1 —u <1+4+¢€” <14 u by (3.3), and

23

we can use Lemma A.la to pull (14 ¢€')(1+ €")? out of the sum 1+ m?, and
Lemma A.1b to multiply (1 + €')(1 4 €")*(1 + ") to get
) =

(1 +m?) = (1 +m?) (1 + ¢f), (A.3)

with (1 —u)* <1+e€) < (1+u)

Thus Lemma A.1 allows us to pull factors like (1+e;) out of sums (Lemma
A.la), or to multiply them together (Lemma A.1b), or to divide between
them (Lemma A.lc). Rounding error analyses of simple computations, like
the analyses of fl(m?) and fi(1 + m?) given above, feature three steps. First,
relative errors e; caused by rounding are assigned to all the basic operations.
Second, 1+e¢; are bounded using (3.3) or (3.4). Third, factors like (1+e¢;) are
gathered together using Lemma A.1. In the proof of Lemma 3.1, we always
spell out the first step in detail, but sometimes omit details for the second
and third steps.

The inequalities in Lemma A.2 below are used in the proof of Lemma 3.1.

Lemma A.2. (a) If0<u <1/4, log £ < 3u.
(b) (1+a)? <e* for a >0 and d a positive integer.

Proof. 1t is easy to prove (a) by expanding log((1 + u)/(1 — u)) in a series.
(b) can be proved by comparing the binomial expansion of (14 a)? with the
series expansion of e®?. 0

The summations in the proof below are all over 1 < j < 2¢.

Proof of Lemma 3.1. We will prove the upper bound only for |fl(ps) — pal-
The proof for |fl(gq) — g4| is similar.

Firstly, consider the computation of 4 amp(m) = log &iﬁl’ﬁ;:
1+ 4m* 1+4m?*(1 2(1 1 1
ﬂ(log +4m): ((+4m*(1 4 e9)?*(+e/1)(+ e2))(+63)(1+e5))
(1+m?)? (1+m?)*(1+ €p)*(1 + e4)

(1 +€6),

where ey and e are the relative errors in fi(m?) and fi(1 + m?) as in (A.2)
and (A.3) respectively, e, e5 are the relative errors of the two multiplications
(4 x m?) x m2, es of the addition 1+ 4m?, e, of the multiplication (1 +m?) x
(1+m?), e5 of the division (14 4m?*)/(1+m?)?, and eq of taking the log. By

24

assumptions (3.3) and (3.4), 1 —u<1+4+e¢ <14uforl <i<6. Lemma
A1 gives

1+4m4) (1+ 4m?*
. — og ——
1+ m2)? 1+ m2)

with 1 —u < 1+ E; < 1+ u and |Ey| < (1 4+ u)log((1 4+ u)(1 —u)"%). A
weaker, but simpler, bound is |Ey| < 10(14u)log((14+u)/(1—u)). Now, the
assumption v < 1/10 implies 10(1 + u) < 11, which together with Lemma
A.2b, gives the simple bound |Fs| < 33u.

Secondly, recall that v;(I{)/2 is obtained by precomputing g*~*(1+g)~%/4
to high precision. Therefore,

fi(log ;) (1+ Bn) + By, (A.4)

s 12)/2) = L1+ B, (A5

with |Es| < u.
Finally, consider the pairwise summation to compute pg;. Let m; be the
endpoint of I{ where amp(m) is minimum. Then,

vi(I})
2

1+4m

fl(pqg) = Z(log m(l +E)) + EJ) (

(1+ B)) (1 +)

where EY and EJ are the relative errors in computing log((1+4m?)(1+m2)~2),
and therefore, are bounded like E; and Ej in (A.4); Ej is the relative error in
computing v¢(I{)/2 and is bounded like F3 in (A.5); and the factors 14 Ej}
take up the errors in the pairwise summation. By Higham [19, p. 91], Ej}
can be chosen so that (1 —u)¢ <1+ Fj < (1+ u)% Lemma A.1 gives

1+ 4m

22 B ve(I9)(1+ EI) + QZuf)E} (A.6)

with (1 —u)¥2 <1+ B < (1 + u)d+2 and |EJ| < 33u(1 + u)*t.
Bounding |fl(pg) — pa| is now a simple matter:

1+4m

1
|ﬂ(pd)—pd|<§Z|log \yf (I — 1]+ = ny)| El|

log4 33
Oi ((1 4+ u)d+2 _ 1) 4+ Zu(l + u)d—l—l
1(1%4(611(114—2) _ 1) + %ueu(d—l—l)‘

25

The second inequality above uses) v¢(If) = 1/2, [log éifé’;;ﬂ <log4, |EJ —
1] < (14 u)*? =1, and |EJ| < 33u(1 4 u)*'. The bound on |EJ — 1| can
be derived easily from (1 —u)*? < 1+ EJ < (14 u)?*2. The final inequality
follows from Lemma A.2b. O

Upper bounding |fl(¢g4) — gq4| involves a small, additional detail. For the
rightmost positive Stern-Brocot interval I;-l, amp(m) is maximum at m = oo.
This causes no difficulty, however, because log((1 +4m*)/(1+m?)?) is taken
as log4 at m = oo by the computation, and as a result, the bounds in (A.4)
still hold.

A program to compute p; and ¢4 is given on page 27 so that the com-
putation leading to (3.2) can be easily reproduced. The program uses up
1.1 gigabytes of memory. It can be written using only a small amount of
memory, but then it would be slower. For finding logs, we used the ver-
sion of Tang’s algorithm [33] that does not precompute and store 1/F for
F =1+435277 0 < j <128. Though we do not give the code here because it
is machine dependent, the guidelines given in [33] are enough to reproduce
that log function (called t1log() in the program) exactly.

26

#include <stdlib.h>
#include <stdio.h>
#define D 28
#define N 268435456
#define NRT 16384

unsigned int filter = OxAAAAAAA;

#define bitcount(x,b) \

{b = 0; \

for(; x!=0; x&=(x-1)) \
b++; \

}

double tlog(double);

double sum(double *, int);

static double table[D+1] = {
.51792099313013395856e-7,
.17419474349120812252e-7,
.34372624963892583604e-7,
.30468493852282286483e-8,
.13257755786643549553e-8,
.17210738065638736930e-8,
.96047017721004812623e-8,
.21163720344633924307e-8,
.48832973763708883155e-9,
.62804229682630359918e-9,
.86028744081078523237e-9,
.76775485601551836682e-9,
.09253258479526686555e-9,
.75222271220251501272e-10,
.17310313575015364275e-10,
.57911957645236136997e-10,
.59398355929779227278e-10,
.85136017154569097184e-11,
.08847542143223175599e-11,
.76288475011345921584e-11,
.32559067131877254014e-11,
.43729407879468667570e-11,
.88296592524085864439e-12,
.48997486270600811265e-12,
.39299106253485053174e-12,
.09698380017115758091e-12,

w

.00976537807464630088e-13,
.95030724556228320737e-13};

MO RNWAORNWONORBNDDR RN NREREWA®RRN

.29600726236369295083e-12, }

m2pl = 1 + m2;
right = tlog((1+4*m2*m2)/(m2p1*m2p1));
x = k"filter;
bitcount (x,b);
table[b];
larray1[j] = measure*right; uarrayi[j] =
left = right;}
else if(i < NRT-1)
for(j=0; j<NRT; j++){
k = isNRT+j;
m = (double)num[k+1]/(double)num[N-k-1];
m2 = m¥m;
m2pl = 1 + m2;
right = tlog((1+4*m2*m2)/(m2p1*m2p1));
x = k"filter;
bitcount(x,b);
table[b];
larrayl[j]l = measurexleft; uarrayi[j]l =
left = right;}
else /% i == NRT-1 */
for(j=0; j<NRT;j++){
k = i#NRT+j;
if(j==NRT-1)
right = tlog(4.0);
else{
m = (double)num[k+1]/(double)num[N-k-1];
m2 = m¥m;
m2pl = 1 + m2;
right = tlog((1+4*m2*m2)/(m2p1*m2p1));}
x = k™filter;
bitcount (x,b);
table[b];
larrayi[j] = measurexleft; uarrayi[j] =
left = right;}
larray2[i] = sum(larray1,NRT); uarray2[i] =

measure =
measure*left;

measure =
measure*right;

measure =
measure*right ;

sum(uarray1,NRT);}

lower =
upper =

sum(larray2,NRT) ;
sum(uarray?2,NRT) ;

Iptr = (unsigned int *)(&lower);

uptr = (unsigned int *)(&upper);

printf("(1,r)= (%.17E, %.17E)\n",lower, upper);

printf("(1,u) in hex = (Yx %x, %x %x)\n",*lptr,*(lptr+l),*uptr,

/* sums a list, length being a power of 2 */
double sum(double *list, int length)

{

void main()
{
int i,j,*num;
double lower,upper,larrayi[NRT],larray2[NRT],
uarray1 [NRT] ,uarray2[NRT] ;
unsigned int *1lptr, *uptr;

num = (int *)malloc(sizeof(int)*(N+1)); }
num[0] = 1; num[1]=1;
for(i=2;i<N;i=i+2){
num[i] = num[i/2];
num[i+1] = num[i/2]+num[i/2+1];}
num[N] = 1;
for(i=0; i<NRT; i++){

unsigned int k,b,x; double m, m2, m2pl,
left, right, measure;

k = i*NRT; m =(double)num[k]/(double)num[N-k];
m2 = m¢m; m2pl = m2+ 1.0;
left = tlog((1+4*m2*m2)/(m2p1*m2p1));

if (i < NRT/4)
for(j=0; j<NRT; j++){

k = i#NRT+j;
m = (double)num[k+1]/(double)num[N-k-1];
m2 = m*m;

27

int i,step;

for(step = 1; step < length; step = 2*step)
for(i=0; i < length; i += 2%step)
list[il+= list[i+step];

return list[0];

*(uptr+1));

B

Acknowledgements

First of all, my thanks to Prof. Nick Trefethen. Much help, guidance, and
prodding from him at every stage made this paper possible. I thank P.
Diaconis, R. Strichartz, H. Kesten, J. Hubbard, D. Knuth, T. Liggett, G.
Strang, A. Stuart, J. Hickey, S. Ravikumar, S. Strogatz, and D. Kozen for
discussions and pointers to the literature. I am indebted to Jason Hickey
who not only let me use his Linux machine, but coaxed it into accepting my
memory-hogging program.

References

[1] G. Alefeld and J. Herzberger, Introduction to Interval Computations,
Academic Press, New York, 1983.

[2] L. Appel and W. Haken, The solution of the four-color map problem,
Scientific American 237(4) (oct. 1977), 108-121.

[3] L. Arnold and H. Crauel, Random dynamical systems, in Lyapunov
Ezxponents, eds. L. Arnold, H. Crauel, J.-P. Eckmann, Lecture Notes in
Math. 1486, Springer-Verlag, Berlin, 1991, 1-22.

[4] R. Bellman, Limit theorem for non-commutative operations, I. Duke
Math. J. 21 (1954), 491-500.

[5] M.A. Berger, An Introduction to Probability and Stochastic Processes,
Springer-Verlag, Berlin, 1993.

[6] P. Bougerol and J. Lacroix, Random Products of Matrices with Applica-
tions to Infinite-dimensional Schrodinger Operators, Birkhauser, Basel,
1984.

[7] L. Breiman, Probability, STAM, Philadelphia, 1992.

[8] A. Brocot, Calcul des rouages par approximation nouvelle méthode, Re-
vue Chronometrique 6 (1860), 186-194.

[9] P. Chassaing, G. Letac and M. Mora, Brocot sequences and random

walks on SLs(R), in Probability measures on groups 7, ed. H. Heyer,
Lecture Notes in Math. 1064, Springer-Verlag, Berlin, 1984, 36-48.

28

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

18]

[19]

[20]

[21]

[22]

E. Clarke and J. Wing, Formal methods: state of the art and future
directions, ACM Computing Surveys 28(4) (1996), 626-643.

T.H. Cormen, C.E. Leiserson and R.L. Rivest, Introduction to Algo-
rithms, MIT press, Cambridge, Massachusetts, (1990).

A. Crisanti, G. Paladin and A. Vulpiani, Products of Random Matrices
wn Statistical Physics, Springer-Verlag, Berlin, 1992.

P. Diaconis and M. Shahshahani, Products of random matrices and com-
puter image generation, in Random Matrices and their Applications, eds.
J.E. Cohen, H. Kesten and C.M. Newman, American Mathematical So-
ciety, Providence, 1986, 173-182.

K. Falconer, Fractal Geometry, Mathematical Foundations and Applica-
tions, John Wiley and Sons, New York, 1990.

H. Furstenberg, Non-commuting random products, Trans. Amer. Math.
Soc. 108 (1963), 377-428.

H. Furstenberg and H. Kesten, Products of random matrices, Ann.
Math. Stat. 31 (1960), 457-469.

R. Graham, D. Knuth and O. Patashnik, Concrete Mathematics,
Addison-Wesley, Reading, Massachusetts, 1994.

Y. Guivarc’h and A. Raugi, Frontiere de Furstenberg, propiétés de con-
traction et théoemes de convergence, Zeit. fur Wahrsch. und Verw. Ge-
biete. 69 (1985), 187-242.

N.J. Higham, Accuracy and Stability of Numerical Algorithms, STAM,
Philadelphia, 1996.

F.Y. Hunt and W.M. Miller, On the approximation of invariant mea-
sures, J. Stat. Phys. 66(1/2) (1992), 535-548.

IEEE Standard for Binary Floating-Point Arithmetic, ANSI/IEEE
Standard 754-1985, Institute of Electrical and Electronics Engineers,
New York, 1985. Reprinted in SIGPLAN Notices 22(2) (1987), 9-25.

J.F.C. Kingman, Subadditive ergodic theory, Ann. Prob. 1 (1973), 883-
909.

29

23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

32]

33]

[34]

J.R. Kinney and T.S. Pitcher, The dimension of some sets defined in
terms of f-expansions, Zeit. fir Wahr. und Verw. Gebeite 4 (1966),
293-315.

V. Krishnamurthy, The four color theorem, Appendix IV in F. Harary,
Graph Theory, Indian student edition, Narosa/Addison-Wesley, New
Delhi, 1988.

F. Ledrappier, Quelques propriétés des exposants caractéristiques, in
Ecole d’¢té de Saint-Flour 12-1982, ed P.L. Hennequin, Lecture Notes
in Math. 1097, Springer-Verlag, Berlin, 1984.

R. Lima and M Rahibe, Exact Lyapunov exponent for infinite products
of random matrices, J Phys. A: Math. Gen. 27 (1994), 3427-3437.

K. Mischaikow and M. Mrozek, Chaos in the Lorenz equations: a com-
puter assisted proof, Bull. Amer. Math. Soc. (N.S.) 33 (1995), 66-72.

V.1. Osseledac, A multiplicative ergodic theorem, Trans. Moscow Math.
Soc. 19 (1968), 197-231.

Y. Peres, Analytic dependence of Lyapunov exponents on transition
probabilities, in Lyapunov Fzponents, ed L. Arnold, Lecture Notes in
Math. 1486, Springer-Verlag, Berlin, 1986, 64-80.

M.A. Stern, Ueber eine zahlentheoretische Funktion, J. fur die reine und
angewandte Mathematik 55 (1858), 193-220.

G. Strang and T. Nguyen, Wawvelets and Filter Banks, Wellesley-
Cambridge Press, Cambridge, Massachusetts, 1996.

R.S. Strichartz, A. Taylor and T. Zhang, Densities of self-similar mea-
sures on the line, Experimental Mathematics 4(2) (1995), 101-128

P.T.P. Tang, Table-driven implementation of the logarithm function for
IEEE floating-point arithmetic, ACM Trans. Math. Soft. 16(4) (1990),
378-400.

S. Tuljapurkar, Demographic applications of random matrix products,
in Random Matrices and their Applications, eds. J.E. Cohen, H. Kesten
and C.M. Newman, American Mathematical Society, Providence, 1986,
319-326.

30

[35] D. Viswanath and L.N. Trefethen, Condition Numbers of Random Tri-
angular Matrices, SIAM J. Matriz Anal. Applics., to appear.

31

