COMPLEXITY ISSUES IN GLOBAL OPTIMIZATION:
A SURVEY

STEPHEN A. VAVASIS*
Department of Computer Science
Cornell University

Ithaca, NY 14853

1. Introduction

Complexity theory refers to the asymptotic analysis of problems and algorithms.
How efficient is an algorithm for a particular optimization problem, as the number
of variables gets large? Are there problems for which no efficient algorithm exists?
These are the questions that complexity theory attempts to address. The theory
originated in work by Hartmanis and Stearns (1965).

By now there is much known about complexity issues in nonlinear optimization.
In particular, our recent book Vavasis (1991) contains all the details on many of the
results surveyed in this chapter.

We begin the discussion with a look at convex problems in the next section. These
problems generally have efficient algorithms. In Section 3 we study the complexity
of two nonconvex problems that also have efficient algorithms because of special
structure. In Section 4, we look into hardness results (proofs of the nonexistence of
efficient algorithms) for general nonconvex problems. Finally, in Section 5 we look
at recent developments in “approximation” algorithms.

We follow the notation in this chapter that lower-case boldface letters are vectors,
lower-case italic letters are scalars, and upper-case italic letters are sets or matrices.
Superscript 7' indicates matrix transpose, and a’x indicates inner product. The
operators ‘>’ and ‘<’ are applied componentwise to vectors; we say x > y if each
entry of x is greater than or equal the corresponding entry of y.

2. Convex problems

Recall that a subset D of IR" is said to be convez if for all x,y € D and for all
A €10,1],

(I-XM)x+Ay €D.

* Work supported in part by the National Science Foundation, the Air Force Office of Scientific
Research, and the Office of Naval Research, through NSF grant DMS-8920550. Also supported in
part by an NSF Presidential Young Investigator award.

2 STEPHEN A. VAVASIS

Convex sets occur very often as the feasible sets for optimization problems. For
example, the set given by linear constraints

D={xeclR": Ax > b},

where A is a given m X n matrix and b is a given n-vector, is convex. In addition,
constraints requiring a vector to be within a certain distance from some given data
point, or within a certain distance of another vector, also give rise to convex sets. An
important property of convex sets is that the intersection of a collection of convex
sets is also convex.

Let D be a nonempty convex set. A function f : D — IR is said to be convez if

for all x,y € S and for all A € [0, 1],

(L=f(x) +Af(y) 2 f((1 = N)x + Ay).

Convex functions occur very often as the objective functions for optimization prob-
lems. For example, a linear function ¢”x, where ¢ is vector, is convex. Similarly,
the quadratic function f(x) = %XTHX + ¢Tx where H is an n x n symmetric pos-
itive semidefinite matrix and c is an n-vector, is also a convex function. Functions
that represent distances are usually convex. In many physical problems, energy is a
convex function of the problem variables.

As we shall see, problems with convex feasible sets and convex objective functions
have efficient algorithms in general. Such problems are generally called convez opti-
mization problems. Thus, linear programming (minimize ¢! x subject to Ax > b) is
a convex problem. Convex problems have some important theoretical properties; in
particular, any local minimum is a global minimum. This means that any algorithm
that attempts to find a local minimum (e.g., Newton’s method with line-search—see
Dennis and Schnabel (1983)) for a convex problem will automatically compute a
global minimum.

When a problem is known to be convex, powerful algorithms can be brought to
bear on it that are guaranteed to converge to a global minimum efficiently. The
first such algorithm is the ellipsoid algorithm, invented by Yudin and Nemirovsky
(1976). (These authors called this algorithm the “modified method of centers of
gravity.”) The first key idea in the development of the ellipsoid algorithm is the
following theorem, which has a simple proof.

Theorem 1 Let D be a nonempty convexr subset of IR® and f : D — R a differen-
tiable convex function. Let x,y be two points in D such that f(x) < f(y). Then

Viy) (y—x)>0.

This theorem has the following consequence: If we take x in the theorem to
be the global minimum of f (assuming it exists), then f(y) > f(x) for any y, so
V£(y)¥ (y —x) > 0 always. This means that, given any point y, we can find a plane
containing y such that the global minimizer is guaranteed to lie on one side of the
plane. The condition in the theorem that f be differentiable can be relaxed.

COMPLEXITY ISSUES 3

The existence of the separating plane suggests some kind of space-partitioning
algorithm. Assume that the problem is to minimize a convex function f over a
convex set . Pick an initial point x; somewhere near the middle of D, and find the
halfspace through x; containing the global minimizer. Now let D; be the intersection
of D with the halfspace, repeat the process for D;, etc., each time shrinking the
region containing the global minimizer.

The difficulty with the algorithm in the last paragraph is that finding a point
“somewhere near the middle” of an arbitrary convex set seems to be a hard problem.
Nemirovsky and Yudin solve this problem by surrounding the initial feasible set with
an ellipsoid, and repeatedly partitioning the ellipsoid. Recall that an ellipsoid E is
a subset of IR™ defined as follows:

E={xeR":(x—c)fMx-c)<1}.

Here, ¢ is a vector, called the center of the ellipsoid, and M is a n X n symmetric
positive definite matrix.

In the ellipsoid method, one starts by computing an large ellipsoid E; containing
the global minimizer. (The exact method for computing £, depends on the format
of the problem. For example, in linear programming with rational coefficients one
can compute F; based on the total size, in digits, of the rational numbers in the
problem.) Say that the center of E; is ¢;. Now we find a halfspace H; of the form

Hy ={xeR":dT(x—¢;) >0}

that contains the global minimizer. The method for determining H; (i.e., determin-
ing d;) is as follows. If ¢; is a feasible (i.e., it lies in D) then we pick d; to be
—V f(c1) and apply the theorem. If ¢; is not feasible, then we choose a halfspace
through ¢; that contains D on one side of it. The exact method for finding such
a halfspace depends on how D is presented. For example, if D is a polyhedron
presented via linear constraints, i.e.,

D={x€lR": Ax > b},

then for an infeasible ¢; there must be an index 7 such that al-Tcl < b;, where

al is the ith row of A. Then we take di = a;; clearly every point in D satisfies

df(x—¢y) > 0.

From the way that H; is computed, we know that the global minimizer must
lie in £1 N Hy. The next step of the algorithm is to compute a new ellipsoid £,
containing £; N H;. It turns out that the volume of Ej5 is strictly smaller than the
volume of E; by a factor depending on n. Then we continue the algorithm with E5.
An example of E1, Hy, E5 is shown in Figure 1.

It has been proved by Yudin and Nemirovsky (1976) that the ellipsoid algorithm
always converges at a certain rate to the global optimum. The following theorem is

a special case of this type of result; it is proved in Vavasis (1991).

Theorem 2 Consider the problem of minimizing a convex function f over the unit
cube D = [0,1]". Let p be an upper bound on the difference between the mazimum
and minimum of f on D. Then in 2n(n + 1)(In(p/€) +Inn) + 2 iterations a point x
can be found such that f(x) < f(x*) + €, where x* is the global minimum.

4 STEPHEN A. VAVASIS

H,y

Fig. 1. Illustration of Ey containing F1 N Hy.

As mentioned earlier, linear programming is a special case of convex optimization.
Therefore, the ellipsoid method can be applied to linear programming. Khachiyan
(1979) showed that this yields a polynomial-time algorithm for linear programming.
An algorithm is said to be polynomial-time if the number of steps is bounded by
a polynomial in the length of the input. Usually, the number of steps means the
number required for a Turing machine, a theoretical model of computation. The
Turing machine is discussed a bit more in Section 4. The length of the input refers
to the total number of symbols needed to represent the input. For example, in the
case of linear programming, we assume that the input (A,b and c) are matrices and
vectors of rational numbers, and the size of the input is the total number of digits
in the numerators and denominators of all the rational numbers.

After the discovery of this first polynomial time algorithm for linear program-
ming, the next major advance was the discovery of interior point methods by Kar-
markar (1984). These are polynomial-time algorithms efficient in practice for lin-
ear programming. Recently, Nesterov and Nemirovsky (1989) have shown how to
generalize interior point methods to a variety of convex optimization problems via
self-concordant functions.

3. Two nonconvex problems with efficient algorithms.

In this section we examine two nonconvex problems that have efficient algorithms.
The first is fractional linear programming, and the second is sphere-constrained
quadratic minimization. As we shall see in the next section, most nonconvex prob-
lems do not have efficient algorithms, so the problems in this section should be
regarded as unusual.

Fractional linear programming (FLP) is the problem of minimizing

(c"x+7)/(d"x +6)

subject to Ax > b. (We must assume that d”x + 6 does not change signs over the
domain, otherwise the problem is unbounded. We assume in this section that it is

COMPLEXITY ISSUES 5

positive).

This problem arises in many conomic applications. The objective function is
nonconvex. It has, however, the property of pseudoconvezity. A function f(x) on a
convex set 1s said to be pseudoconvex if the inequality stated in Theorem 1 holds for
all x,y. A pseudoconvex function may be minimized using the ellipsoid algorithm.
When applying the ellipsoid algorithm to a pseudoconvex function one must check
that the gradient does not vanish at a non-minimum; this can be verified for FLP.

More efficient algorithms are known for FLP, such as Dinkelbach’s algorithm.
These algorithms typically introduce a parameter 6, that is a “guess” at the optimum
value of the objective function. It is not hard to show that if we define

f(0) = minimum of ¢T'x +7v — 0(dTx + §)
subject to Ax > b

then the optimal value of the FLP 6* is corresponds exactly to a root of f. Ac-
cordingly, one tries to find a minimum of function f using one-variable rootfinding
techniques. See Schaible and Ibaraki (1983).

A second nonconvex problem possessing an efficient algorithm is minimizing a
quadratic function over a sphere. Recall that a general quadratic function of n
variables has the form f(x) = %XTHX + ¢”x, where H is symmetric. Thus, the
problem is:

minimize %XT Hx +c''x

subject to xTx < 1.
(Without loss of generality, we have centered the sphere constraint at the origin and
used a sphere of radius 1.) The key solving this problem is the first and second order
necessary conditions. First, we make the assumption that the solution x* satisfies
the constraint as an equation: x*7x* = 1. The case when this does not hold occurs
only when H is positive definite and is easy to detect. Under the assumption, the
first and second order conditions are as follows. There is a p such that:

Hx* + ¢ = —pux*,

X*TX* —

p >0,

H + pl is positive semidefinite.

As observed by Gay (1979) and Sorenson (1982) these conditions turn out to
be sufficient for global minimality. This is a highly unusual in optimization theory.
For nonconvex problems, conditions like this are usually not sufficient even for local
minimality.

An algorithm to globally minimize a quadratic function on a sphere in polyno-
mial time was proposed independently by Ye (1988) and Karmarkar (1989). The
algorithm attempts to find g and x* satisfying the above conditions using a binary
search. It converges to the solution at a linear rate. Vavasis and Zippel (1990)
showed that this algorithm answers the associated decision problem in polynomial
time. (See the next section for a description of “decision problems.”)

More recently Ye (1992) has argued that Newton’s method can be used to obtain
1 giving better complexity bounds.

6 STEPHEN A. VAVASIS
4. General nonconvex problems

In the last section we described two nonconvex problems whose global minima can
be found efficiently. Unfortunately, these problems are the exception rather than
the rule. General nonconvex problems seem to be intractable. In this section we
will describe two kinds of intractability results. The first is for problems where the
input is specified as numerical data, including specifically quadratic programming.
The second kind of result is for problems in which the input is a “black box.”

Recall that quadratic programming (QP) is the problem of minimizing a quadratic
function f(x) = %XTHX + ¢Tx subject to Ax > b. If we assume that H,c, A, b are
specified as sequences of rational numbers, then the problem is in a form that can
be addressed by the Turing machine model of computation. We do not define the
Turing machine model here; its important features are (1) it manipulates symbols;
the list of symbols comes from a finite set (e.g., the digits 0,...,9 and punctuation
marks); (2) it has an unbounded number of memory cells, and each cell can hold one
symbol; and (3) it is controlled by a program whose length is finite. One of the most
powerful theories for showing problems are apparently intractable is the theory of
NP-completeness, for which we will now give overview.

First, we have to say more about problems. A problem is a mapping F : [— B
where I, B are both sets of strings of symbols. For example, in the case of quadratic
programming, I would consist of quadruples of the form (H, ¢, 4, b) written out in
digits, and B would be vectors written out as rational numbers, and F' would map
a quadruple (H,c, A,b) to x* that minimizes %XTHX + ¢”x subject to Ax > b.
Elements of I are called instances of the problem. We assume that the set I is
defined by some fairly simple syntactic property (e.g., it is defined as quadruples
(H,c, A, b) where all the matrices and vectors have compatible sizes).

We say that a Turing machine computes this function F', i.e., solves quadratic
programming, if receives (H, ¢, A, b) as input and returns the correct x* as output.
We omit discussion about what the machine should do if there is more than one
global minimum, or if the problem is unbounded or infeasible.

A special class of problems is the class of decision problems. For a decision
problem the set B contains just two elements: B = {yes, no}. Here is an example
of a decision problem connected to quadratic programming. The input set I is
5-tuples of the form (H,c,A,b,{). This instance is a yes-instance if there is a
feasible point to Ax > b such that the objective function f(x) achieves a value of
¢ or smaller. Otherwise the instance is a no-instance. The Turing machine outputs
nothing other than yes or no.

Clearly if we had Turing machine that computed the global minimizer or its value
then we could use it to solve the decision problem described in the last paragraph.
Conversely, a Turing machine for the decision problem in the last paragraph could
be used to actually find the global minimizer by using binary search, and by adding
additional constraints to find the entries of x*.

Traditional complexity theory attempts to classify only decision problems. One
important complexity class is P; these are decision problems for which there is a
Turing machine that solves them, such that the running time of the Turing machine
is bounded by a polynomial in the length of the input. Linear programming with
rational numbers, when posed as a decision problem, is in P.

COMPLEXITY ISSUES 7

A decision problem not in P is sometimes said to be intractable; such a deci-
sion problem has no asymptotically efficient algorithm. In general, there are very
few decision problems connected with optimization that have been proved to be
intractable. The strongest known rigorous result in this direction is the theory of
NP-completeness.

We start with the complexity class NP. This class is somewhat harder to define
than P. A decision problem F' : I — {yes,no} is in NP if there is a set C of
strings defined by some simple syntactic property, and another decision problem
G : I x C — {yes,no} such that:

— (Gisin P, and

— If F(z) = yes, then there is at least one y € C, such that y has length at most
polynomial in #, and such that G(z,y) = yes. String y is called a certificate of
z.

— If F(z) = no, then for all y € C, G(z,y) = no.

Note that P C NP in this definition; if ¥ were in P we could take C' to contain
a single string, the empty string, and we could take G = F'.

An example of an NP problem is the well-known subset sum problem. An instance
of the subset-sum problem consists of a sequence of integers a; .. ., a,, and another
integer 7. This instance is defined to be a yes-instance if there exists a subset

J CA{l,...,m} such that
Zai:'y.

i€J
This problem is in NP; the argument is as follows. We take the set C' in the
definition of NP to be all finite subsets J of the positive integers. The augmented
decision problem G is defined to have as input (ai,...,am,7,J). This augmented
instance is a yes-instance of GG if the above equation holds. Clearly G can be solved
in polynomial time; the Turing machine for G merely has to add up a sequence of
integers and compare the answer to +.

Thus, a decision problem is in NP all of its yes instances can be easily “cer-
tified.” This class includes a very large number of interesting combinatorial and
optimization-related decision problems.

A subclass of NP is the set of NP-complete problems. A decision problem F' in
NP is said to be NP-complete if every problem in NP can be reduced in polynomial
time to F'. We do not go into detail about what form this reduction must take, but we
provide an example. Consider the partition problem. The instances of this problem
are sequences of nonnegative integers (by,...,by). An instance is a yes-instance if
there is a subset J C {1,...,m} such that

S hi=> b

ieJ igJ

Clearly this problem is in NP. Furthermore, an instance of the partition problem can
easily be reduced to an instance of the subset sum problem; just take (aj, ..., am)
in the subset sum problem to be (b1,...,by), and take ¥ = (by + -+ -+ by,)/2. Then
the instance of the partition problem is a yes-instance if and only if the instance of
the subset-sum problem is a yes-instance.

8 STEPHEN A. VAVASIS

It is nearly as simple to demonstrate a reduction in the opposite direction: An
instance of the subset-sum problem can be transformed to an instance of the par-
tition problem. In particular, the reader can check that starting from an instance
(a1,...,am,7) of the subset-sum problem, we can transform it to the instance

(a17"'aam:a1+"'+am_27)

of the partition problem.

Since every problem in NP can be reduced efficiently to an NP-complete prob-
lem, the NP-complete problem is thus the “hardest” problem in NP. There are
thousands of problems now known to be NP-complete, including the subset-sum
and partition problems. Many people believe that NP contains some intractable
problems, in which case all NP-complete problems would also be intractable. How-
ever, no problem in NP has ever been proved to lie outside of P.

For a general background on the complexity classes introduced here, see Garey
and Johnson (1979). See Vavasis (1991) for information about how these classes
relate to optimization. The theory of NP-completeness originates with Cook (1971)
and Karp (1972).

A very important result for the field of global optimization is the following the-
orem.

Theorem 3 Quadratic programming, when stated as a decision problem (as above),
ts NP-complete.

The proof that quadratic programming is NP-hard is due to Sahni (1974). A
problem F' is said to be “NP-hard” if any problem in NP can be reduced to F'.
Thus, NP-hardness is a weaker condition than NP-completeness. (For F' to be
NP-complete, we additionally require that F' itself must lie in NP. Indeed, NP-
hard problems are not even necessarily decision problems.) The result in previous
theorem (a strengthening of Sahni’s result) is due to Vavasis (1990).

Even when restricted to special cases, quadratic programming remains NP-hard.
Here are some examples of NP-hard special cases of quadratic programming.

1. Quadratic knapsack problems. These are problems of the form:

n
minimize Z dix? + ¢z
i=1
subject to a1z1 4+ -+ apz, =7,
i<z <wy, fori=1,...n.
Here, the input data is the list of d;’s, ¢;’s, a;’s, v, a;’s, l;’s, and wu;’s. This
problem was shown to be NP-hard by Sahni.
2. Box-constrained problems. These are problems of the form:
minimize %XTHX +cl'x
subject to 0 < z; <1, forz=1,...,n.
3. Simplex-constrained problems. This is a problem of the form:
minimize %XTHX +c’'x
subject to 1 + -+, =1,
z; >0, fore=1,...,n.

COMPLEXITY ISSUES 9

Pardalos et al. (1989) observe that a theorem of Motzkin and Straus (1965)
proves that this problem is NP-hard.

4. Problems with one negative eigenvalue. Convex quadratic programming is solv-
able in polynomial time with the ellipsoid method or an interior point method,
as described in Section 2. As mentioned above, a quadratic function f(x) =
%XTHX + ¢Tx is convex if H is positive semidefinite, i.e., if all the eigenvalues
of H are nonnegative. It is interesting to ask what happens if precisely one
eigenvalue of H is negative, while the remaining eigenvalues are nonnegative.
It turns out, as proved by Pardalos and Vavasis (1991), that such a problem is
NP-hard.

An interesting open special case is products of linear functions: It is not known
whether instances of QP of the form

minimize (¢f'x+ 7)(d¥x + 6)
subject to Ax > b

are solvable in polynomial time.

Since quadratic programming is NP-hard, problems more general are expected
to be even harder. One generalization of quadratic programming is polynomial
programming;:

minimize q(z1,...,2,)
subject to p1(z1,...,2,) >0

pm(z1,...,2n) >0
where ¢, p1, ..., pm are polynomial functions of n variables.

This problem is clearly NP-hard since it generalizes quadratic programming.
When posed as a decision problem, it lies in a complexity class called PSPACE;
this class contains NP. It is not known whether the above problem lies in NP.
On the other hand it is also not known whether the above problem is PSPACE-
complete. If it were PSPACE-complete, this would be strong evidence that it is
not in NP.

Another way to generalize quadratic programming is with a “black-box” model.
This is a model of computation in which we assume that f, the objective function, is
provided as an external subroutine (rather than via numerical data as in quadratic
programming). The subroutine takes x and returns f(x). Thus, global information
about f is not available to the optimization algorithm. In general, for this model
one assumes that algorithms can compute with real numbers (as opposed to Turing
machines, in which all computations are done on symbols drawn from a finite list). It
is also common to assume that derivatives of f are available as black-box subroutines.
For problems of this model, sometimes the constraints are also expected to be black-
boxes, and sometimes the constraints are specified numerically.

In the black-box model it is generally not possible to compute an exact global
minimum. Therefore, most theorems pertaining to this model refer to computing an
approximation to the global minimum.

The ellipsoid algorithm is an example of an algorithm that can work in this model.
This is because the ellipsoid algorithm needs only function values and gradient values
for the objective function.

10 STEPHEN A. VAVASIS

The ellipsoid algorithm works, however, only when f is convex. For nonconvex
f there are no efficient algorithms in the black-box model. Unlike the quadratic
programming case, where no proof of intractability is known, it is possible in the
black-box model to demonstrate true exponential lower bounds on the complexity.

For the sake of definiteness, we assume that the feasible set is D = [0, 1]?; this
will allow us to focus on the objective function as the source of difficulty.

A naive algorithm for (approximately) globally minimizing a general function f
over D would be: (1) insert a fine mesh of points, (2) evaluate f at every point,
and (3) output the meshpoint with the smallest value of f. The intractability result
below says essentially that in the worst case, there is no better algorithm than this
one. The following theorem is a special case of a theorem from Nemirovsky and

Yudin (1983).

Theorem 4 Let F'(k,p) be the class of k-times differentiable functions on D whose
kth derivative is bounded by p in the following sense: At any point x € D and for
any unit vector u,

d—f(x + tu)

k
< p.
‘dtk =P

Let A be any minimization algorithm that works in the black-box model (evaluating
[and its derivatives. Assume that for any function in F(k,p), A is guaranteed to
output an x such that f(x) — f(x*) < e. (Here x* denotes the global minimum.)
Then there is a function f € F(k,p) such that algorithm A will run for at least

()"

steps on f.

For example, in the case that & = 1, this theorem states for a differentiable
function whose derivative is at most p, the number of steps required is at least a
constant multiplied by (p/e)”. There is an obvious algorithm to achieve this bound,
namely insert a mesh of points spaced ¢/p in each dimension. The above theorem
applies also to randomized algorithms under suitable definitions.

Compare the bound in this theorem to the bound for the ellipsoid algorithm: For
convex functions, the running time is polynomial in n and polynomial in In(p/¢). For
nonconvex functions the running time is exponential in n and exponential in In(p/e¢).
Note also that smoothness in f is not much help; smoothness slightly ameliorates
the exponential dependence on n but does not change the problem to polynomial.

5. Approximation algorithms in quadratic programming

In the last section we discussed approximate solutions for the black-box model.
It is reasonable to inquire into approximate solutions for quadratic programming
as well. For combinatorial NP-hard problems, there is a well-developed theory of
approximate solutions. The definition of approximate solution needs to be revised
somewhat (compared to the common definition in the combinatorial literature) in
order to work on nonlinear programming.

COMPLEXITY ISSUES 11

Consider the problem of minimizing f on a compact set D C IR". We propose the
following definition for an e-approzimate solution. Let p be the difference between the
maximum and minimum values of f on D. Then we say that x° is an e-approximate
solution to the minimization problem if

F(x°%) — f(x*) < ep.

This definition is sensible only for ¢ € [0,1]; if ¢ = 0 then x° is a global minimum,
and if € = 1 then any feasible point satisfies this condition.
This definition has the desirable properties that it is invariant under translations
and scalings of the objective function, and under transformations of the feasible set.
Vavasis (1992a) uses a certain kind of covering and partitioning algorithm to
establish the following theorem:

Theorem 5 Consider the optimization problem of minimizing f(x) = %XTHX—{—CTX
subject to Ax > b. Assume that the feasible region {x : Ax > b} is compact. Let
t be the number of negative eigenvalues of H. There ts an algorithm to find an
e-approrimate solution to this problem in

t
1
o) M Y
NG
steps. In this formula, £ denotes the time to solve a conver quadratic programming
problem of the same size as the original problem.

Thus, a good approximate solution may be found efficiently if the number of negative
eigenvalues of the quadratic function is not too large.

Unfortunately, for general QP the number of negative eigenvalues could be as
large as n, in which case the running-time bound in the preceding theorem grows
exponentially fast. Can we hope to get an efficient algorithm for approximating f
for general QP? Recent results suggest that such an algorithm, if it exists, could
only satisfy weak approximation bounds. Specifically, Bellare and Rogaway (1992)
show the following theorem is true for some constant é§ > 0.

Theorem 6 Suppose there were an algorithm to approrimate quadratic program-
ming with ¢ = (2(1n")6 — 1) / (2(“1")5 + 1) . Then any problem in NP could be

solved in quasi-polynomial time, that is, time O(n(ln")k).

This theorem is based partly on complexity results by Feige et al. (1991). Since
the concluding statement of the theorem is thought to be unlikely, the supposition
is probably false. In other words, we cannot hope to approximate QP in polyno-
mial time unless we are willing to accept an approximation factor that tends to 1
asymptotically as the problem gets larger.

Indeed, it is possible to construct a weak approximate solution in polynomial
time, a result due to Vavasis (1992b):

Theorem 7 There is a polynomial time algorithm to compute a 1 — en™2 approxi-
mate solution for quadratic programming, where ¢ s a constant.

12 STEPHEN A. VAVASIS

The algorithm is based on computing a sphere lying inside the polytope, and then
minimizing the objective function over the sphere using the Ye-Karmarkar algorithm.

A stronger approximate solution can be constructed for special cases of quadratic
programming. Here is a result due to Vavasis (1992a):

Theorem 8 For the nonconver quadratic knapsack problem (see Section 4 for a de-
scription of this problem) an e-approzimate solution can be computed in time poly-
nomial in n, 1/e, and the problem size (in digits) for any ¢ € (0,1).

The algorithm for this theorem is based on dynamic programmaing; its analysis is
quite lengthy.

6. Conclusions

A major theme of this chapter is the difference between convex and nonconvex
problems: highly effective algorithms exist for convex global minimization. For
nonconvex problems, however, no asymptotically efficient algorithms are known. In
practice, only nonconvex problems with a small number of variables can be solved.
Indeed the correlation between nonconvexity and intractability is quite strongly
exhibited by Theorem 5—the running time grows exponentially with ¢, the degree
of nonconvexity.

References

M. Bellare and P. Rogaway. The complexity of approximating a nonlinear program. preprint, 1992.

S. A. Cook. The complexity of theorem-proving procedures. In Proc. $rd ACM Symposium on the
Theory of Computing, pages 151-158, 1971.

J. E. Dennis and R. E. Schnabel. Numerical Methods for Unconstrained Optimization and Non-
linear Equations. Prentice—Hall, Englewood Cliffs, New Jersey, 1983.

U. Feige, S. Goldwasser, L. Lovasz, S. Safra, and M. Szegedy. Approximating clique is almost
NP-complete. In Proceedings of the 32nd Symposium on Foundations of Computer Science,
pages 2-12, 1991.

M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of NP-
Completeness. W. H. Freeman, San Francisco, 1979.

D. M. Gay. Computing optimal locally constrained steps. Technical Report 2013, Mathematics
Research Center, University of Wisconsin, Madison, Wisconsin, 1979.

J. Hartmanis and R.E. Stearns. On the computational complexity of algorithms. Trans. A.M.S.,
117:285-306, 1965.

N. Karmarkar. A new polynomial-time algorithm for linear programming. Combinatorica, 4:373—
395, 1984.

N. Karmarkar. An interior-point approach to NP-complete problems. preprint, 1989.

R. M. Karp. Reducibility among combinatorial problems. In R. E. Miller and J. W. Thatcher,
editors, Complezity of Computer Computations, pages 85—103. Plenum Press, New York, 1972.

L. G. Khachiyan. A polynomial algorithm in linear programming. Dokl Akad. Nauk SSSR,
244:1093-1086, 1979. translated in Soviet Math. Dokl 20:191-194.

T. S. Motzkin and E. G. Straus. Maxima for graphs and a new proof of a theorem of Turan. Canad.
J. Math., 17:533-540, 1965.

A. S. Nemirovsky and D. B. Yudin. Problem Complexity and Method Efficiency in Optimiza-
tton. John Wiley and Sons, Chichester, 1983. Translated by E. R. Dawson from Slozhnost’
Zadach 1 Effektivnost’ Metodov Optimizatsit, 1979, Glavnaya redaktsiya fiziko-matematicheskoi
literatury, Izdatelstva “Nauka”.

Y. E. Nesterov and A. S. Nemirovsky. Self-concordant functions and polynomial-time methods in
convex programming. Book—Preprint, Central Economic and Mathematical Institute, USSR
Academy of Science, Moscow, Russia, 1989.

COMPLEXITY ISSUES 13

P. M. Pardalos and S. A. Vavasis. Quadratic programming with one negative eigenvalueis NP-hard.
J. Global Optimiz., 1:15-22, 1991.

P. M. Pardalos, Y. Ye, and C.-G. Han. Algorithms for the solution of quadratic knapsack problems.
preprint, 1989.

. Sahni. Computationally related problems. SIAM J. Comp., 3:262-279, 1974.

. Schaible and T. Ibaraki. Fractional programming. Furopean Journal of Operational Research,
12:325-338, 1983.

D. C. Sorenson. Newton’s method with a model trust region modification. STAM J. Numer. Anal.,

19:409-426, 1982.

S. A. Vavasis and R. Zippel. Proving polynomial-time for sphere-constrained quadratic program-
ming. Technical Report 90-1182, Department of Computer Science, Cornell University, Ithaca,
New York, 1990.

. A. Vavasis. Quadratic programming is in NP. Info. Proc. Lett, 36:73—77, 1990.

. A. Vavasis. Nonlinear Optimization: Complexity Issues. Oxford University Press, New York,
1991.

S. A. Vavasis. Approximation algorithms for indefinite quadratic programming. Mathematical

Programming, 1992. to appear.

wn wn

wnm wnm

S. A. Vavasis. Polynomial time weak approximation algorithms for quadratic programming.
preprint, 1992.

. Ye. On the interior algorithms for nonconvex quadratic programming. preprint, 1988.

. Ye. A new complexity result on minimization of a quadratic function with a sphere constraint.
In C. A. Floudas and P. M. Pardalos, editors, Recent Advances in Global Optimization, pages
19-31. Princeton University Press, Princeton, New Jersey, 1992.

D. B. Yudin and A. S. Nemirovsky. Informational complexity and efficient methods for solving com-
plex extremal problems. Fkonomika ¢ Matematicheskie Metody, 12:357-369, 1976. Translated
in Matekon: Translations of Russian and East Furopean Math. Economics 13:25-45, Spring
1977.

=

